Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
EMBO Mol Med ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009886

ABSTRACT

Despite the re-emergence of the pioneering "Coley's toxin" concept in anti-cancer immune therapies highlighted by check-point inhibitors and CAR-T approaches, fundamental mechanisms responsible for the immune-enhancing efficacy of low-dose "Coley's toxin" remain poorly understood. This study examines the novel reprogramming of immune-enhancing neutrophils by super-low dose endotoxin conducive for anti-cancer therapies. Through integrated analyses including scRNAseq and functional characterizations, we examined the efficacy of reprogrammed neutrophils in treating experimental cancer. We observed that neutrophils trained by super-low dose endotoxin adopt a potent immune-enhancing phenotype characterized by CD177loCD11bloCD80hiCD40hiDectin2hi. Both murine and human neutrophils trained by super-low dose endotoxin exhibit relieved suppression of adaptive T cells as compared to un-trained neutrophils. Functionally, neutrophils trained by super-low dose endotoxin can potently reduce tumor burden when transfused into recipient tumor-bearing mice. Mechanistically, Super-low dose endotoxin enables the generation of immune-enhancing neutrophils through activating STAT5 and reducing innate suppressor IRAK-M. Together, our data clarify the long-held mystery of "Coley's toxin" in rejuvenating anti-tumor immune defense, and provide a proof-of-concept in developing innate neutrophil-based anti-tumor therapeutics.

2.
iScience ; 27(6): 110097, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38883832

ABSTRACT

Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.

3.
Methods Mol Biol ; 2782: 25-37, 2024.
Article in English | MEDLINE | ID: mdl-38622390

ABSTRACT

Atherosclerosis remains the leading cause of coronary heart disease (CHD) with enormous health and societal tolls. Traditional drug development approaches have been focused on small molecule-based compounds that aim to lower plasma lipids and reduce systemic inflammation, two primary causes of atherosclerosis. However, despite the widely available lipid-lowering and anti-inflammatory small compounds and biologic agents, CHD prevalence still remains high. Based on recent advances revealing disrupted immune homeostasis during atherosclerosis pathogenesis, novel strategies aimed at rejuvenating immune homeostasis with engineered immune leukocytes are being developed. This chapter aims to assess basic and translational efforts on these emerging strategies for the effective development of atherosclerosis treatment, as well as key challenges in this important translational field.


Subject(s)
Atherosclerosis , Humans , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Inflammation/pathology , Anti-Inflammatory Agents/therapeutic use , Homeostasis
4.
Methods Mol Biol ; 2782: 89-95, 2024.
Article in English | MEDLINE | ID: mdl-38622394

ABSTRACT

Communication among neutrophils plays critical roles during various phases of inflammatory responses, with clinical relevance to both acute and chronic inflammatory diseases. Despite its significance, underlying mechanisms are not well understood, due to the lack of an effective in vitro system to properly address this important question. Here we report a robust in vitro method to culture primary murine neutrophils derived from bone marrow, amenable for well-controlled studies of both neutrophil activation and intercellular communication among co-cultured neutrophils. This protocol can generate primary neutrophils with high purity and survival for an extended culture period, suitable for further phenotypic and functional analyses.


Subject(s)
Cell Communication , Neutrophils , Animals , Mice , Coculture Techniques , Bone Marrow
5.
Methods Mol Biol ; 2782: 81-88, 2024.
Article in English | MEDLINE | ID: mdl-38622393

ABSTRACT

Innate monocytes can be trained or reprogrammed to adopt distinct memory states, such as low-grade inflammation and immune exhaustion, bearing fundamental relevance to the pathogenesis of both acute diseases such as sepsis as well as chronic diseases such as atherosclerosis. Therefore, it is critically important to develop a regimen for generating memory monocytes in vitro in order to better define key monocyte memory states with diverse potentials for proliferation, differentiation, and activation, as well as underlying mechanisms. Here, we describe an efficient in vitro system to propagate a large number of highly purified murine memory monocytes through sustaining bone marrow-derived monocytes with macrophage colony-stimulating factor (M-CSF, 10 ng/mL)-containing medium, together with other polarization agents such as lipopolysaccharide (LPS) for a 5-day period. This method can yield high-purity monocytes, capable of exhibiting dynamic memory behaviors upon training with various polarizing agents.


Subject(s)
Macrophage Colony-Stimulating Factor , Monocytes , Animals , Mice , Bone Marrow Cells , Granulocyte-Macrophage Colony-Stimulating Factor , Bone Marrow , Lipopolysaccharides/pharmacology , Cell Differentiation
6.
Methods Mol Biol ; 2782: 189-193, 2024.
Article in English | MEDLINE | ID: mdl-38622403

ABSTRACT

Monocytes play important and diverse roles in both homeostatic and inflammatory immune responses. The CRISPR-Cas9 system in lentiviral vectors has been widely used to manipulate specific genes of immortal monocyte cell lines to study monocyte functions. However, human primary monocytes are refractory to this method with low gene knockout (KO) efficiency. In this chapter, we developed an in vitro gene-editing procedure for primary human monocytes with a consistent and high-gene KO efficiency via a ribonucleoprotein (RNP) complex consisting of Cas9 protein and single-guide RNA (sgRNA). This method can be adapted to study the functions of targeted signaling molecules involved in modulating monocyte polarization in primary human monocytes.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Monocytes/metabolism , CRISPR-Associated Protein 9/genetics
7.
Methods Mol Biol ; 2782: 159-166, 2024.
Article in English | MEDLINE | ID: mdl-38622400

ABSTRACT

Regulatory B (Breg) cells have been demonstrated to play an important role in the inhibition of a wide range of immunological responses, and they are absent or malfunction in autoimmune diseases like lupus. Breg cells can control immunological responses and keep the immune system in a balanced state by releasing immunosuppressive cytokines such as transforming growth factor-beta (TGF-ß) and interleukin-10 (IL-10), which in turn promote regulatory T (Treg) cells and reduce effector T cell responses. Breg cells have also been linked to the modulation of cancer immunity. Due to their immunosuppressive role, in the context of cancer, Breg cells aid in tumor immune evasion and promote tumor progression. Nonetheless, it has been established that Breg cells are involved in both cancer immunity and autoimmunity, and their characterizations beyond surface markers, for example, on the transcriptomic level, are essential for our understanding of Breg biology in health and disease. In this chapter, using lupus-prone MRL/lpr mice, we describe a Breg cell isolation protocol for the purpose of single-cell RNA sequencing analysis.


Subject(s)
Autoimmune Diseases , B-Lymphocytes, Regulatory , Neoplasms , Animals , Mice , Mice, Inbred MRL lpr , Cytokines/metabolism , Transforming Growth Factor beta/genetics , T-Lymphocytes, Regulatory , Autoimmune Diseases/pathology , Neoplasms/pathology
8.
Cell Rep ; 43(3): 113894, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38442017

ABSTRACT

Monocytes can develop an exhausted memory state characterized by reduced differentiation, pathogenic inflammation, and immune suppression that drives immune dysregulation during sepsis. Chromatin alterations, notably via histone modifications, underlie innate immune memory, but the contribution of DNA methylation remains poorly understood. Using an ex vivo sepsis model, we show altered DNA methylation throughout the genome of exhausted monocytes, including genes implicated in immune dysregulation during sepsis and COVID-19 infection (e.g., Plac8). These changes are recapitulated in septic mice induced by cecal slurry injection. Methylation profiles developed in septic mice are maintained during ex vivo culture, supporting the involvement of DNA methylation in stable monocyte exhaustion memory. Methylome reprogramming is driven in part by Wnt signaling inhibition in exhausted monocytes and can be reversed with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Our study demonstrates the significance of altered DNA methylation in the maintenance of stable monocyte exhaustion memory.


Subject(s)
Monocytes , Sepsis , Mice , Animals , DNA Methylation/genetics , Immune System Exhaustion , Wnt Signaling Pathway
9.
iScience ; 27(2): 108978, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38323001

ABSTRACT

Monocyte exhaustion with sustained pathogenic inflammation and immune-suppression, a hallmark of sepsis resulting from systemic infections, presents a challenge with limited therapeutic solutions. This study identified Methoxy-Mycolic Acid (M-MA), a branched mycolic acid derived from Mycobacterium bovis Bacillus Calmette-Guérin (BCG), as a potent agent in alleviating monocyte exhaustion and restoring immune homeostasis. Co-treatment of monocytes with M-MA effectively blocked the expansion of Ly6Chi/CD38hi/PD-L1hi monocytes induced by LPS challenges and restored the expression of immune-enhancing CD86. M-MA treatment restored mitochondrial functions of exhausted monocytes and alleviated their suppressive activities on co-cultured T cells. Independent of TREM2, M-MA blocks Src-STAT1-mediated inflammatory polarization and reduces the production of immune suppressors TAX1BP1 and PLAC8. Whole genome methylation analyses revealed M-MA's ability to erase the methylation memory of exhausted monocytes, particularly restoring Plac8 methylation. Together, our data suggest M-MA as an effective agent in restoring monocyte homeostasis with a therapeutic potential for treating sepsis.

10.
J Leukoc Biol ; 115(4): 589-606, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38301269

ABSTRACT

Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.


Subject(s)
Epigenesis, Genetic , Histones , Humans , Histones/metabolism , DNA Methylation , Inflammation/genetics , Immunity, Innate
11.
Front Immunol ; 14: 1304758, 2023.
Article in English | MEDLINE | ID: mdl-38124753

ABSTRACT

Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.


Subject(s)
Asthma , Receptors, Purinergic P2 , Humans , Mice , Animals , Interleukin-1 Receptor-Like 1 Protein , Allergens , Interleukin-33 , Asthma/metabolism , Inflammation/metabolism , Pyroglyphidae , Dermatophagoides pteronyssinus , Adenosine Triphosphate , Intracellular Signaling Peptides and Proteins
12.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961551

ABSTRACT

Background: Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. Methods: Systems analyses integrating single-cell RNA-sequencing and complementary immunological approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming was assessed by integrated biochemical and genetic approaches. The inter-cellular propagation of homeostasis resolution was evaluated by co-culture assays with donor monocytes trained by 4-PBA and recipient naïve monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high fat diet-fed ApoE -/- mouse model with i.p. 4-PBA administration. Furthermore, the selective efficacy of 4-PBA trained monocytes were examined by i.v. transfusion of ex vivo trained monocytes by 4-PBA into recipient high fat diet-fed ApoE -/- mice. Results: In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 via reducing peroxisome stress and attenuating SYK-mTOR signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ neddylation mediated by TOLLIP. 4-PBA trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo . Conclusion: Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision-therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.

14.
bioRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693554

ABSTRACT

Innate immune memory is the process by which pathogen exposure elicits cell-intrinsic states to alter the strength of future immune challenges. Such altered memory states drive monocyte dysregulation during sepsis, promoting pathogenic behavior characterized by pro-inflammatory, immunosuppressive gene expression in concert with emergency hematopoiesis. Epigenetic changes, notably in the form of histone modifications, have been shown to underlie innate immune memory, but the contribution of DNA methylation to this process remains poorly understood. Using an ex vivo sepsis model, we discovered broad changes in DNA methylation throughout the genome of exhausted monocytes, including at several genes previously implicated as major drivers of immune dysregulation during sepsis and Covid-19 infection (e.g. Plac8 ). Methylome alterations are driven in part by Wnt signaling inhibition in exhausted monocytes, and can be reversed through treatment with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Importantly, these changes are recapitulated in septic mice following cecal slurry injection, resulting in stable changes at critical immune genes that support the involvement of DNA methylation in acute and long-term monocyte dysregulation during sepsis.

15.
Inflamm Res ; 72(8): 1733-1744, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37563334

ABSTRACT

OBJECTIVE: Proper inflammation resolution is crucial to prevent runaway inflammation during sepsis and reduce sepsis-related mortality/morbidity. Previous studies suggest that deleting TRAM, a key TLR4 signaling adaptor, can reprogram the first inflammatory responder cell-neutrophil from an inflammatory state to a resolving state. In this study, we aim to examine the therapeutic potential of TRAM-deficient neutrophils in vivo with recipient mice undergoing experimental sepsis. MATERIAL AND METHODS: Wild-type or Tram-/- mice were intraperitoneally injected with cecal slurry to induce either severe or mild sepsis. Phenotypic examinations of sepsis and neutrophil characteristics were examined in vivo and ex vivo. The propagations of resolution from donor neutrophils to recipient cells such as monocytes, T cells, and endothelial cells were examined through co-culture assays in vitro. The efficacies of Tram-/- neutrophils in reducing inflammation were studied by transfusing either wild-type or Tram-/- neutrophils into septic recipient mice. RESULTS: Tram-/- septic mice had improved survival and attenuated injuries within the lung and kidney tissues as compared to wild-type septic mice. Wild-type septic mice transfused with Tram-/- resolving neutrophils exhibited reduced multi-organ damages and improved cellular homeostasis. In vitro co-culture studies revealed that donor Tram-/- neutrophils can effectively propagate cellular homeostasis to co-cultured neighboring monocytes, neutrophils, T cells as well as endothelial cells. CONCLUSIONS: Neutrophils with TRAM deletion render effective reprogramming into a resolving state beneficial for ameliorating experimental sepsis, with therapeutic potential in propagating cellular and tissue homeostasis as well as treating sepsis.


Subject(s)
Neutrophils , Sepsis , Animals , Mice , Endothelial Cells , Inflammation , Mice, Inbred C57BL , Sepsis/genetics , Sepsis/therapy
16.
Inflamm Res ; 72(8): 1539-1549, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37453943

ABSTRACT

BACKGROUND: Innate monocytes can adopt dynamic "memory" states ranging from low-grade inflammation to pathogenic exhaustion, dependent upon signal strength and history of challenges. Low-grade inflammatory monocytes facilitate the pathogenesis of chronic inflammatory diseases, while exhausted monocytes drive the pathogenesis of severe sepsis. Although clinical and basic studies suggest the conservation of key features of exhausted monocytes from human and murine sepsis, systems analyses of monocyte exhaustion among human and murine monocytes are lacking. METHODS: We performed cross examination of septic monocytes scRNAseq data recently collected from human sepsis patients as well as experimental septic mice, in reference to monocytes experimentally exhausted in vitro. Furthermore, we performed pseudo-time analyses of in vitro programmed monocytes following prolonged challenges causing either low-grade inflammation or exhaustion. Additional comparative analyses of low-grade inflammatory monocytes were performed with scRNAseq data from selected human patients with chronic low-grade inflammatory diseases. RESULTS: Our systems analyses reveal key features of monocyte exhaustion including reduced differentiation, pathogenic inflammation and immune suppression that are highly conserved in human and murine septic monocytes, and captured by in vitro experimental exhaustion. Pseudo-time analyses reveal that monocytes initially transition into a less-differentiated state with proliferative potential. The expansion of proliferative monocytes can be observed not only in experimentally challenged monocytes, but also in tissues of murine sepsis and human septic blood. We observed that monocytes similarly transition into the less-differentiated state when challenged with a subclinical dose endotoxin under chronic inflammatory conditions. Instead of being exhausted, monocytes with prolonged challenges with super-low dose endotoxin bifurcate into the low-grade inflammatory immune-enhancing or the chemotactic/adhesive state, often see in atherosclerosis or auto-immune diseases. CONCLUSIONS: Key features of monocyte memory dynamics are identified and conserved in human and murine monocytes, which can be captured by prolonged challenges of innate signals with varying signal strength.


Subject(s)
Monocytes , Sepsis , Humans , Animals , Mice , Sepsis/pathology , Inflammation/pathology , Endotoxins
17.
Antioxid Redox Signal ; 39(16-18): 1027-1038, 2023 12.
Article in English | MEDLINE | ID: mdl-37082952

ABSTRACT

Significance: Innate immune cells adopt distinct memory states during the pathogenesis of acute and chronic inflammatory diseases. Intracellular generations of reactive oxygen species (ROS) play key roles during the programming dynamics of innate immune cells such as monocytes and macrophages. Recent Advances: ROS modulate the adaptation of innate leukocytes to varying intensities and durations of inflammatory signals, facilitate fundamental reprogramming dynamics such as priming, tolerance, and exhaustion, in addition to fundamental processes of proliferation, differentiation, phagocytosis, chemotaxis, as well as expression of pro- and anti-inflammatory mediators. ROS can be generated at distinct subcellular compartments including cellular membrane, mitochondria, and peroxisome. Complex inflammatory signals may finely regulate ROS generation within distinct subcellular compartments, which in turn may differentially facilitate innate memory dynamics. Critical Issues: Complex inflammatory signals with varying strengths and durations may differentially trigger ROS generation at peroxisome, mitochondria, and other subcellular organelles. Peroxisomal or mitochondrial ROS may facilitate the assembly of distinct signaling platforms involved in the programming of memory innate leukocytes. Despite the emerging connection of subcellular ROS with innate immune memory, underlying mechanisms are still not well defined. Future Directions: Recent important discoveries linking subcellular ROS and innate memory as critically reviewed here hold novel translational relevance related to acute and chronic inflammatory diseases. Capitalizing on these novel findings, future systems studies that use next-generation single-cell dynamic analyses in response to complex inflammatory environments are urgently needed to comprehensively decipher the programming dynamics of innate immune memory, finely modulated by subcellular ROS. Antioxid. Redox Signal. 39, 1027-1038.


Subject(s)
Mitochondria , Trained Immunity , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Organelles/metabolism , Signal Transduction , Immunity, Innate
18.
Inflamm Res ; 72(5): 1083-1097, 2023 May.
Article in English | MEDLINE | ID: mdl-37060359

ABSTRACT

OBJECTIVE: Patients with systemic lupus erythematosus (SLE) often develop multi-organ damages including heart and kidney complications. We sought to better define the underlying mechanisms with a focus on the chemokine receptor CX3CR1. METHODS: We generated Cx3cr1-deficient MRL/lpr lupus-prone mice through backcrossing. We then employed heterozygous intercross to generate MRL/lpr littermates that were either sufficient or deficient of CX3CR1. The mice were also treated with either Lactobacillus spp. or a high-fat diet (HFD) followed by assessments of the kidney and heart, respectively. RESULTS: Cx3cr1-/- MRL/lpr mice exhibited a distinct phenotype of exacerbated glomerulonephritis compared to Cx3cr1+/+ littermates, which was associated with a decrease of spleen tolerogenic marginal zone macrophages and an increase of double-negative T cells. Interestingly, upon correction of the gut microbiota with Lactobacillus administration, the phenotype of exacerbated glomerulonephritis was reversed, suggesting that CX3CR1 controls glomerulonephritis in MRL/lpr mice through a gut microbiota-dependent mechanism. Upon treatment with HFD, Cx3cr1-/- MRL/lpr mice developed significantly more atherosclerotic plaques that were promoted by Ly6C+ monocytes. Activated monocytes expressed ICOS-L that interacted with ICOS-expressing follicular T-helper cells, which in turn facilitated a germinal center reaction to produce more autoantibodies. Through a positive feedback mechanism, the increased circulatory autoantibodies further promoted the activation of Ly6C+ monocytes and their display of ICOS-L. CONCLUSIONS: We uncovered novel, Cx3cr1 deficiency-mediated pathogenic mechanisms contributing to SLE-associated glomerulonephritis and cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Glomerulonephritis , Lupus Erythematosus, Systemic , Animals , Mice , CX3C Chemokine Receptor 1/genetics , Mice, Inbred MRL lpr , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/genetics , Autoantibodies , Disease Models, Animal
19.
Front Immunol ; 14: 1297329, 2023.
Article in English | MEDLINE | ID: mdl-38162637

ABSTRACT

Monocyte exhaustion characterized by immune-suppressive features can develop during sepsis and contribute to adverse patient outcomes. However, molecular mechanisms responsible for the establishment of immune-suppressive monocytes with reduced expression of immune-enhancing mediators such as CD86 during sepsis are not well understood. In this study, we identified that the TLR4 intracellular adaptor TRAM plays a key role in mediating the sustained reduction of CD86 expression on exhausted monocytes and generating an immune-suppressive monocyte state. TRAM contributes to the prolonged suppression of CD86 through inducing TAX1BP1 as well as SARM1, collectively inhibiting Akt and NFκB. TRAM deficient mice are protected from cecal slurry-induced experimental sepsis and retain immune-competent monocytes with CD86 expression. Our data reveal a key molecular circuitry responsible for monocyte exhaustion and provide a viable target for rejuvenating functional monocytes and treating sepsis.


Subject(s)
B7-2 Antigen , Immune System Exhaustion , Monocytes , Receptors, Interleukin , Sepsis , Animals , Humans , Mice , Armadillo Domain Proteins/metabolism , B7-2 Antigen/metabolism , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Monocytes/immunology , Monocytes/metabolism , Monocytes/pathology , NF-kappa B p50 Subunit/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sepsis/metabolism , Sepsis/pathology , Signal Transduction , Mice, Knockout , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism
20.
J Innate Immun ; : 1-11, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35760043

ABSTRACT

Respiratory influenza A virus (IAV) infection continues to pose significant challenges in healthcare of human diseases including asthma. IAV infection in mice was shown to increase IL-33, a key cytokine in driving airway inflammation in asthma, but how IL-33 is regulated during viral infection remains unclear. We previously found that a genetic mutation in Toll-interacting protein (Tollip) was linked to less airway epithelial Tollip expression, increased neutrophil chemokines, and lower lung function in asthma patients. As Tollip is involved in maintaining mitochondrial function, and mitochondrial stress may contribute to extracellular ATP release and IL-33 secretion, we hypothesized that Tollip downregulates IL-33 secretion via inhibiting ATP release during IAV infection. Wild-type and Tollip knockout (KO) mice were infected with IAV and treated with either an ATP converter apyrase or an IL-33 decoy receptor soluble ST2 (sST2). KO mice significantly lost more body weight and had increased extracellular ATP, IL-33 release, and neutrophilic inflammation. Apyrase treatment reduced extracellular ATP levels, IL-33 release, and neutrophilic inflammation in Tollip KO mice. Excessive lung neutrophilic inflammation in IAV-infected Tollip KO mice was reduced by sST2, which was coupled with less IL-33 release. Our data suggest that Tollip inhibits IAV infection, potentially by inhibiting extracellular ATP release and reducing IL-33 activation and lung inflammation. In addition, sST2 may serve as a potential therapeutic approach to mitigate respiratory viral infection in human subjects with Tollip deficiency.

SELECTION OF CITATIONS
SEARCH DETAIL