Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
1.
Mol Med ; 30(1): 99, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982366

ABSTRACT

BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.


Subject(s)
Carbon Tetrachloride , Cyclic AMP Response Element-Binding Protein , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Knockout , Receptors, G-Protein-Coupled , Signal Transduction , Smad7 Protein , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/chemically induced , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatic Stellate Cells/metabolism , Smad7 Protein/metabolism , Smad7 Protein/genetics , Transforming Growth Factor beta1/metabolism , Male , Humans , Cell Line , Disease Models, Animal , Mice, Inbred C57BL , Gene Deletion
2.
Regen Biomater ; 11: rbae073, 2024.
Article in English | MEDLINE | ID: mdl-39027362

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide. Considering its special anatomical site and the progressive resistance to chemotherapy drugs, the development of more effective, minimally invasive and precise treatment methods is urgently needed. Nanomaterials, given their special properties, can be used as drug carrier systems to improve the therapeutic effect and reduce the adverse effects. The drug carrier systems with photothermal effect can promote the killing of cancer cells and help overcome drug resistance through heat stress. We selected dopamine, a simple raw material, and designed and synthesized three different configurations of nano-polydopamine (nPDA) nanomaterials, including nPDA balls, nPDA plates and porous nPDA balls. In addition to the self-polymerization and self-assembly, nPDA has high photothermal conversion efficiency and can be easily modified. Moreover, we loaded cisplatin into three different configurations of nPDA, creating nPDA-cis (the nano-drug carrier system with cisplatin), and comparatively studied the properties and antitumor effects of all the nPDA and nPDA-cis materials in vitro and nPDA-cis in vivo. We found that the photothermal effect of the nPDA-cis balls drug carrier system had synergistic effect with cisplatin, resulting in excellent antitumor effect and good clinical application prospects. The comparison of the three different configurations of drug carrier systems suggested the importance of optimizing the spatial configuration design and examining the physical and chemical properties in the future development of nano-drug carrier systems. In this study, we also noted the duality and complexity of the influences of heat stress on tumors in vitro and in vivo. The specific mechanisms and the synergy with chemotherapy and immunotherapy will be an important research direction in the future.

3.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 262-267, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597087

ABSTRACT

Robotic surgery is known as the "third technological revolution" in the field of surgery, and is an important milestone in the development of modern surgery. However, our country's innovative surgical robot industry is still in its early stages, and it is only being utilized in certain surgical fields. To explore the effectiveness of the application of domestic surgical robot in oral and maxillofacial surgery, the author successfully completed a case of benign parotid tumor resection with the assistance of a domestic autonomous robot. The operation was successful, facial nerve function was preserved, and postoperative wound healing was good.


Subject(s)
Parotid Neoplasms , Robotic Surgical Procedures , Humans , Parotid Neoplasms/surgery , Parotid Neoplasms/pathology , Parotid Gland/surgery , Parotid Gland/pathology , China
4.
Molecules ; 29(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474486

ABSTRACT

Herein, activated red mud particles are used as adsorbents for phosphorus adsorption. HCl solutions with different concentrations and deionized water are employed for desorption tests, and the desorption mechanism under the following optimal conditions is investigated: HCl concentration = 0.2 mol/L, desorbent dosage = 0.15 L/g, desorption temperature = 35 °C, and desorption time = 12 h. Under these conditions, the phosphate desorption rate and amount reach 99.11% and 11.29 mg/g, respectively. Notably, the Langmuir isothermal and pseudo-second-order kinetic linear models exhibit consistent results: monomolecular-layer surface desorption is dominant, and chemical desorption limits the rate of surface desorption. Thermodynamic analysis indicates that phosphorus desorption by the desorbents is spontaneous and that high temperatures promote such desorption. Moreover, an intraparticle diffusion model demonstrates that the removal of phosphorus in the form of precipitation from the surface of an activated hematite particle adsorbent primarily occurs via a chemical reaction, and surface micromorphological analysis indicates that desorption is primarily accompanied by Ca dissolution, followed by Al and Fe dissolutions. The desorbents react with the active elements in red mud, and the vibrations of the [SiO4]4- functional groups of calcium-iron garnet and calcite or aragonite disappear. Further, in Fourier-transform infrared spectra, the intensities of the peaks corresponding to the PO43- group considerably decrease. Thus, desorption primarily involves monomolecular-layer chemical desorption.

5.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474482

ABSTRACT

Red mud (RM), a bauxite residue, contains hazardous radioactive wastes and alkaline material and poses severe surface water and groundwater contamination risks, necessitating recycling. Pretreated RM can be used to make adsorbents for water treatment. However, its performance is affected by many factors, resulting in a nonlinear correlation and coupling relationship. This study aimed to identify the best formula for an RM adsorbent using a mathematical model that examines the relationship between 11 formulation types (e.g., pore-assisting agent, component modifier, and external binder) and 9 properties (e.g., specific surface area, wetting angle, and Zeta potential). This model was built using a back-propagation neural network (BP) based on single-factor experimental data and orthogonal experimental data. The model trained and predicted the established network structure to obtain the optimal adsorbent formula. The RM particle adsorbents had a pH of 10.16, specific surface area (BET) of 48.92 m2·g-1, pore volume of 2.10 cm3·g-1, compressive strength (ST) of 1.12 KPa, and 24 h immersion pulverization rate (ηm) of 3.72%. In the removal of total phosphorus in flotation tailings backwater, it exhibited a good adsorption capacity (Q) and total phosphorous removal rate (η) of 48.63 mg·g-1 and 95.13%, respectively.

6.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 551-563, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38404180

ABSTRACT

Cisplatin (CDDP) is a widely used chemotherapeutic agent that has remarkable antineoplastic effects. However, CDDP can cause severe acute kidney injury (AKI), which limits its clinical application. Agrimol B is the main active ingredient found in Agrimonia pilosa Ledeb and has a variety of pharmacological activities. The effect of agrimol B on CDDP-induced renal toxicity has not been determined. To investigate whether agrimol B has a protective effect against CDDP-induced AKI, we first identify Sirtuin 1 (Sirt1) as a critical target protein of agrimol B in regulating AKI through network pharmacology analysis. Subsequently, the AKI mouse model is induced by administering a single dose of CDDP via intraperitoneal injection. By detecting the serum urea nitrogen and creatinine levels, as well as the histopathological changes, we confirm that agrimol B effectively reduces CDDP-induced AKI. In addition, treatment with agrimol B counteracts the increase in renal malondialdehyde level and the decrease in superoxide dismutase (SOD), catalase and glutathione levels induced by CDDP. Moreover, western blot results reveal that agrimol B upregulates the expressions of Sirt1, SOD2, nuclear factor erythroid2-related factor 2, and downstream molecules, including heme oxygenase 1 and NAD(P)H quinone dehydrogenase 1. However, administration of the Sirt1 inhibitor EX527 abolishes the effects of agrimol B. Finally, we establish a tumor-bearing mouse model and find that agrimol B has a synergistic antitumor effect with CDDP. Overall, agrimol B attenuates CDDP-induced AKI by activating the Sirt1/Nrf2 signaling pathway to counteract oxidative stress, suggesting that this compound is a potential therapeutic agent for the treatment of CDDP-induced AKI.


Subject(s)
Acute Kidney Injury , Butanones , Cisplatin , Phenols , Mice , Animals , Cisplatin/toxicity , Sirtuin 1/metabolism , NF-E2-Related Factor 2/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Signal Transduction , Kidney/metabolism , Oxidative Stress
7.
Med Res Rev ; 44(4): 1867-1903, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38421080

ABSTRACT

Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.


Subject(s)
Bone and Bones , Humans , Bone and Bones/metabolism , Animals
8.
Article in English | MEDLINE | ID: mdl-38306619

ABSTRACT

Biological aging profoundly impairs the homeostasis of the skeletal system. Cellular senescence, a hallmark of biological aging, plays an instrumental role in bone disease. The underlying mechanisms of cellular senescence, triggered by both intracellular and extracellular stimuli, are multifaceted and yet to be uncovered. Recent research indicates that acute cellular senescence often serves beneficial roles, such as contributing to growth, development, and tissue regeneration. By contrast, chronic cellular senescence, primarily driven by the accumulation of senescent cells (SnCs) and the release of senescence-associated secretory phenotypes (SASP), has detrimental effects on the skeletal system by irreversibly disrupting bone homeostasis and promoting age-related disorders. Furthermore, the bone marrow is rich in immune cells and their exposure to SASP often leads to immune dysfunction, resulting in unresolved chronic inflammation and compromised adaptive immunity. Until now, the impact of SnCs and SASP on the skeleton has remained elusive. Meanwhile, extensive efforts are being made to combat age-related diseases through various strategies. Among them, SnCs and SASP are the primary targets for antiaging therapeutic clearance, resulting in the development of "senolytics" and "senomorphics," respectively. In this review, we summarize and highlight the role of SnCs and SASP in skeletal pathophysiology, the mechanism of cellular senescence in affecting bone metabolism, and potential therapeutic approaches, particularly senolytics and senomorphics, in treating cellular senescence-related bone diseases.


Subject(s)
Cellular Senescence , Senotherapeutics , Cellular Senescence/physiology
9.
Exp Cell Res ; 435(2): 113935, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38237848

ABSTRACT

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is a common malignancy with a poor prognosis. This study aimed to determine the influence and underlying mechanisms of CLSPN on OSCC. METHODS: CLSPN expression was tested using quantitative real-time polymerase chain reaction, immunohistochemistry, and western blotting. Flow cytometry, cell counting kit, and colony formation assays were performed to determine OSCC cell apoptosis, viability, and proliferation, respectively. In OSCC cells, the extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose uptake, and lactate production were determined using the corresponding kits. Changes in the protein levels of HK2, PKM2, LDHA, Wnt3a, and ß-catenin were assessed using western blotting. RESULTS: CLSPN expression was increased in OSCC tissues. Overexpression of CLSPN in HSC-2 cells promoted cell proliferation, increased the levels of ECAR, glucose uptake, and lactate production, and increased the protein levels of HK2, PKM2, LDHA, Wnt3a, and ß-catenin, but inhibited OCR levels and apoptosis. The knockdown of CLSPN in CAL27 cells resulted in the opposite results. Moreover, the effects of CLSPN overexpression on glycolysis and OSCC cell proliferation were reversed by Wnt3a knockdown. In vivo, knockdown of CLSPN restrained tumor growth, glycolysis, and the activation of Wnt/ß-catenin signaling. CONCLUSION: CLSPN promoted glycolysis and OSCC cell proliferation, and reduced apoptosis, which was achieved by the activation of Wnt/ß-catenin signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Wnt Signaling Pathway/physiology , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , beta Catenin/genetics , beta Catenin/metabolism , Cell Proliferation , Glycolysis , Cell Movement , Lactates , Glucose , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism
10.
Cancer Med ; 12(24): 22354-22369, 2023 12.
Article in English | MEDLINE | ID: mdl-37990988

ABSTRACT

OBJECTIVE: To investigate the expression of TTC7B and its prognostic significance, biological roles, and impact on the immune system in patients with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: Clinical and genomic data were obtained from TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus), GEPIA2 (Gene Expression Profiling Interactive Analysis 2.0), and TIMER2.0 (Tumor Immune Estimation Resource 2.0) databases. R software was utilized to process the retrieved data. qPCR and immunohistochemical assays were performed to validate the findings obtained from the databases. RESULTS: High expression of TTC7B was observed in HNSCC, and this heightened expression is significantly associated with reduced overall survival (OS) in patients, making it an independent risk factor impacting OS. TTC7B is correlated with focal adhesions and cell migration pathways based on functional enrichment analysis. CIBERSORT analysis and TIMER2.0 show a positive link between TTC7B and multiple immune cells, particularly macrophages. Pearson's analysis reveals a significant correlation between TTC7B and ferroptosis-related genes. CONCLUSION: In all, TTC7B could serve as a promising prognostic indicator of HNSCC, and is closely associated with focal adhesions, immune infiltration, and ferroptosis.


Subject(s)
Ferroptosis , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Biomarkers , Ferroptosis/genetics , Head and Neck Neoplasms/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Tetratricopeptide Repeat
11.
Oral Dis ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856618

ABSTRACT

OBJECTIVE: Emerging evidence suggests that glucose depletion (GD)-induced cell death depends on system Xc- , a glutamate/cystine antiporter extensively studied in ferroptosis. However, the underlying mechanism remains debated. Our study confirmed the correlation between system Xc- and GD-induced cell death and provided a strategic treatment for oral squamous cell carcinoma (OSCC). METHODS: qPCR and Western blotting were performed to detect changes in xCT and CD98 expression after glucose withdrawal. Then, the cell viability of OSCCs under the indicated conditions was measured. To identify the GD-responsible transcriptional factors of SLC7A11, we performed a luciferase reporter assay and a ChIP assay. Further, metabolomics was conducted to identify changes in metabolites. Finally, mitochondrial function and ATP production were evaluated using the seahorse assay, and NADP+ /NADPH dynamics were measured using a NADP+ /NADPH kit. RESULTS: In OSCCs, system Xc- promoted GD-induced cell death by increasing glutamate consumption, which promoted NADPH exhaustion and TCA blockade. Moreover, GD-induced xCT upregulation was governed by the p-eIF2α/ATF4 axis. CONCLUSIONS: System Xc- overexpression compromised the metabolic flexibility of OSCC under GD conditions, and thus, glucose starvation therapy is effective for killing OSCC cells.

12.
J Control Release ; 363: 235-252, 2023 11.
Article in English | MEDLINE | ID: mdl-37739016

ABSTRACT

Extracellular vesicles (EVs) are promising therapeutic carriers owing to their ideal size range and intrinsic biocompatibility. However, limited targeting ability has caused major setbacks in the clinical application of EV therapeutics. To overcome this, we genetically engineered natural free streptavidin (SA) on the cellular surface of bone marrow mesenchymal stem cells (BMSCs) and obtained typical EVs from these cells (BMSC-EVs). Biotin-coated gold nanoparticles confirmed the expression of SA on the membrane of EVs, which has a high affinity for biotinylated molecules. Using a squamous cell carcinoma model, we demonstrated that a pH-sensitive fusogenic peptide -modification of BMSC-EVs achieved targetability in the microenvironment of a hypoxic tumor to deliver anti-tumor drugs. Using EGFR+HER2- and EGFR-HER2+ breast cancer models, we demonstrated that anti-EGFR and anti-HER2 modifications of BMSC-EVs were able to specifically deliver drugs to EGFR+ and HER2+ tumors, respectively. Using a collagen-induced arthritis model, we confirmed that anti-IL12/IL23-modified BMSC-EVs specifically accumulated in the arthritic joint and alleviated inflammation. Administration of SA-overexpressing BMSC-EVs has limited immunogenicity and high safety in vivo, suggesting that BMSC-derived EVs are ideal drug delivery vehicle. These representative scenarios of targeting modification suggest that, using different biotinylated molecules, the SA-overexpressing BMSC-EVs could be endowed with different targetabilities, which allows BMSC-EVs to serve as a versatile platform for targeted drug delivery under various situations.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Mesenchymal Stem Cells , Metal Nanoparticles , MicroRNAs , Humans , Female , Gold/metabolism , Extracellular Vesicles/metabolism , Breast Neoplasms/metabolism , ErbB Receptors/metabolism , MicroRNAs/metabolism , Tumor Microenvironment
13.
Aging Cell ; 22(11): e13980, 2023 11.
Article in English | MEDLINE | ID: mdl-37681346

ABSTRACT

The craniofacial bones provide structural support for the skull and accommodate the vulnerable brain tissue with a protective cavity. The bone tissue undergoes constant turnover, which relies on skeletal stem cells (SSCs) and/or mesenchymal stem cells (MSCs) and their niches. SSCs/MSCs and their perivascular niche within the bone marrow are well characterized in long bones. As for cranial bones, besides bone marrow, the suture mesenchyme has been identified as a unique niche for SSCs/MSCs of craniofacial bones. However, a comprehensive study of the two different cranial stem cell niches at single-cell resolution is still lacking. In addition, during the progression of aging, age-associated changes in cranial stem cell niches and resident cells remain uncovered. In this study, we investigated age-related changes in cranial stem cell niches via single-cell RNA sequencing (scRNA-seq). The transcriptomic profiles and cellular compositions have been delineated, indicating alterations of the cranial bone marrow microenvironment influenced by inflammaging. Moreover, we identified a senescent mesenchymal cell subcluster and several age-related immune cell subclusters by reclustering and pseudotime trajectory analysis, which might be closely linked to inflammaging. Finally, differentially expressed genes (DEGs) and cell-cell communications were analyzed during aging, revealing potential regulatory factors. Overall, this work highlights the age-related changes in cranial stem cell niches, which deepens the current understanding of cranial bone and suture biology and may provide therapeutic targets for antiaging and regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Stem Cell Niche , Mice , Animals , Stem Cell Niche/genetics , Transcriptome/genetics , Skull , Stem Cells
14.
Int J Oral Sci ; 15(1): 37, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37661238

ABSTRACT

Oral potentially malignant disorders (OPMDs) are precursors of oral squamous cell carcinoma (OSCC). Deregulated cellular energy metabolism is a critical hallmark of cancer cells. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1α) plays vital role in mitochondrial energy metabolism. However, the molecular mechanism of PGC1α on OPMDs progression is less unclear. Therefore, we investigated the effects of knockdown PGC1α on human dysplastic oral keratinocytes (DOKs) comprehensively, including cell proliferation, cell cycle, apoptosis, xenograft tumor, mitochondrial DNA (mtDNA), mitochondrial electron transport chain complexes (ETC), reactive oxygen species (ROS), oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and glucose uptake. We found that knockdown PGC1α significantly inhibited the proliferation of DOKs in vitro and tumor growth in vivo, induced S-phase arrest, and suppressed PI3K/Akt signaling pathway without affecting cell apoptosis. Mechanistically, downregulated of PGC1α decreased mtDNA, ETC, and OCR, while enhancing ROS, glucose uptake, ECAR, and glycolysis by regulating lactate dehydrogenase A (LDHA). Moreover, SR18292 (an inhibitor of PGC1α) induced oxidative phosphorylation dysfunction of DOKs and declined DOK xenograft tumor progression. Thus, our work suggests that PGC1α plays a crucial role in cell proliferation by reprograming energy metabolism and interfering with energy metabolism, acting as a potential therapeutic target for OPMDs.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Humans , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , DNA, Mitochondrial , Energy Metabolism , Glucose , Mouth Neoplasms/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species
15.
Stem Cell Rev Rep ; 19(8): 2557-2575, 2023 11.
Article in English | MEDLINE | ID: mdl-37755647

ABSTRACT

In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Humans , Induced Pluripotent Stem Cells/metabolism , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Cell Differentiation , Treatment Outcome , Cell Line
16.
Cell Death Dis ; 14(7): 486, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524706

ABSTRACT

Accumulating evidence indicates that metabolic responses are deeply integrated into signal transduction, which provides novel opportunities for the metabolic control of various disorders. Recent studies suggest that itaconate, a highly concerned bioactive metabolite catalyzed by immune responsive gene 1 (IRG1), is profoundly involved in the regulation of apoptosis, but the underlying mechanisms have not been fully understood. In the present study, the molecular mechanisms responsible for the apoptosis-modulatory activities of IRG1/itaconate have been investigated in mice with lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced apoptotic liver injury. The results indicated that LPS/D-Gal exposure upregulated the level of IRG1 and itaconate. Deletion of IRG1 resulted in exacerbated hepatocytes apoptosis and liver injury. The phospho-antibody microarray analysis and immunoblot analysis indicated that IRG1 deletion enhanced the activation of AMP-activated protein kinase (AMPK)/c-jun-N-terminal kinase (JNK) pathway in LPS/D-Gal exposed mice. Mechanistically, IRG1 deficiency impaired the anti-oxidative nuclear factor erythroid-2 related factor 2 (Nrf2) signaling and then enhanced the activation of the redox-sensitive AMPK/JNK pathway that promotes hepatocytes apoptosis. Importantly, post-insult supplementation with 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, resulted in beneficial outcomes in fulminant liver injury. Therefore, IRG1/itaconate might function as a negative regulator that controls AMPK-induced hepatocyte apoptosis in LPS/D-Gal-induced fulminant liver injury.


Subject(s)
AMP-Activated Protein Kinases , MAP Kinase Signaling System , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Apoptosis Regulatory Proteins/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
17.
RSC Adv ; 13(26): 18128, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37323465

ABSTRACT

[This corrects the article DOI: 10.1039/D3RA02088F.].

18.
RSC Adv ; 13(24): 16300-16310, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37266505

ABSTRACT

Under the assistance of ultrasound, the fluoride in the spent cathode carbon of aluminum electrolysis was recovered by the process of washing first and then leaching. The effects of time, temperature, liquid-solid ratio, ultrasonic power, alkali amount and acid concentration on the leaching rate of fluoride were investigated. The useful components in the leaching solution were recovered by evaporation crystallization and cryolite regeneration. The tests of X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) showed that under the optimal experimental conditions (water washing: 50 s, 3 : 1, 420 W; alkaline leaching: alkali amount 1 g, 60 min, 70 °C, 7 : 1, 480 W; acid leaching: acid concentration 0.6 mol L-1, 60 min, 5 : 1, 70 °C, 480 W), the leaching rate of fluoride was 82.99%, and the fluoride contents recovered in the water washing and leaching processes are 94.67% and 95%, respectively. There is no solid waste and waste water in the whole experimental process.

19.
J Craniofac Surg ; 34(5): 1563-1569, 2023.
Article in English | MEDLINE | ID: mdl-37220721

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the therapeutic effect of gasless endoscopic submandibular gland excision through hairline approach and the safety, feasibility and practicability of this technique. METHODS: Twenty-five patients with submandibular gland lesions who underwent gasless endoscopic submandibular gland excision through hairline approach at the Department of Head and Neck Oncology of the West China Hospital of Stomatology from May 1 st 2021 to May 31 st 2022 were included in this prospective study. The variables were analyzed statistically with SPSS software version 23.0 (IBM Corp, Armonk, New York, USA). RESULTS: There was a female predominance (72%), female to male ratio was 2.6. The mean age was 30.6±10.2 years (range: 11 to 52 year). All 25 cases of endoscopic submandibular gland excision through hairline approach were done without conversion to conventional approach. This approach was indicated in 14 cases (56%) for pleomorphic adenoma, 8 cases (32%) for chronic sialadenitis, 2 cases (8%) for adenoid cystic carcinoma, and 1 case (4%) for lymphadenitis. The incision length mean was 4.8±0.4 mm (range: 4 to 5 mm); the operation duration mean was 100.6±39.7 min (range: 51 to 197 min); the intraoperative bleeding mean was 13.2±5.7 ml (range: 5 to 20 ml); the hospital length of stay mean was 4.5±0.8 days (range: 3 to 6 days). The follow-up mean was 10±3.4 months (range: 5 to 16 months). The patients were very satisfied with postoperative cosmetic result (score mean: 9.2±1). No recurrence of disease and complications such as postoperative bleeding, hematoma, nerve damage, skin necrosis, infection, and hair loss occurred. CONCLUSIONS: Gasless endoscopic submandibular gland excision through hairline approach is safe, feasible and practicable, resulting in a very satisfied cosmetic result without significant complications; the intraoperative bleeding is less, the operative field is clear, the operation duration decreases with accumulation of experience.


Subject(s)
Submandibular Gland Diseases , Submandibular Gland , Humans , Male , Female , Young Adult , Adult , Submandibular Gland/surgery , Submandibular Gland/pathology , Prospective Studies , Endoscopy/methods , Neck , Submandibular Gland Diseases/surgery
20.
Biol Rev Camb Philos Soc ; 98(5): 1749-1767, 2023 10.
Article in English | MEDLINE | ID: mdl-37171117

ABSTRACT

Cranial bones constitute a protective shield for the vulnerable brain tissue, bound together as a rigid entity by unique immovable joints known as sutures. Cranial sutures serve as major growth centres for calvarial morphogenesis and have been identified as a niche for mesenchymal stem cells (MSCs) and/or skeletal stem cells (SSCs) in the craniofacial skeleton. Despite the established dogma of cranial bone and suture biology, technological advancements now allow us to investigate these tissues and structures at unprecedented resolution and embrace multiple novel biological insights. For instance, a decrease or imbalance of representation of SSCs within sutures might underlie craniosynostosis; dural sinuses enable neuroimmune crosstalk and are newly defined as immune hubs; skull bone marrow acts as a myeloid cell reservoir for the meninges and central nervous system (CNS) parenchyma in mediating immune surveillance, etc. In this review, we revisit a growing body of recent studies that explored cranial bone and suture biology using cutting-edge techniques and have expanded our current understanding of this research field, especially from the perspective of development, homeostasis, injury repair, resident MSCs/SSCs, immunosurveillance at the brain's border, and beyond.


Subject(s)
Craniosynostoses , Skull , Humans , Cranial Sutures/metabolism , Craniosynostoses/metabolism , Morphogenesis/physiology , Sutures
SELECTION OF CITATIONS
SEARCH DETAIL