Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403553, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845013

ABSTRACT

Eumelanin, a natural, biocompatible, and biodegradable photothermal agent derived from biomass, has attracted increasingly considerable attention due to its outstanding photothermal conversion efficiency. Unfortunately, its tendency to aggregate in flexible non-polar polymers, owing to its abundant polar groups on the surface, severely restricted the application of eumelanin in photothermal composite field. Herein, a feasible strategy is proposed to disperse eumelanin in non-polar rubber matrix via in situ generation of Zinc dimethacrylate (ZDMA). The graft-polymerization of ZDMA promotes the interfacial compatibility between styrene butadiene rubber (SBR) and eumelanin, achieving a uniform dispersion of eumelanin in SBR. The rubber composite exhibits a considerable tensile strength of 11.4 MPa, acceptable elongation at break of 146%, and outstanding photothermal conversion efficiency of up to 75.2% with only 1 wt% of eumelanin. Furthermore, based on the easy-processing of SBR matrix, the composite is treated with a sandpaper template technique and sprayed with trimethoxy(1H,1H,2H,2H-perfluorodecyl)silane (PFDTMS) to endow the material with near superhydrophobicity (water contact angle of 147.9°) capacity. Hydrophobicity provides excellent icing resistance, with droplet surfaces extending more than twice as long to freeze. Moreover, this hydrophobic photothermal material exhibits remarkable anti-frosting, de-frosting, and de-icing capabilities.

2.
Chemphyschem ; : e202400383, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661567

ABSTRACT

To reduce the amount of energy consumed in integrated circuits, high efficiency with the lowest energy is always expected. Self-drive device is one of the options in the pursuit of low power nanodevices. It is a typical strategy to form an internal electric field by constructing a heterojunction in self-drive semiconductor system. Here, a two-step method is proposed to prepare high quality centimeter-sized 2D tellurium (Te) thin film with hall mobility as high as 37.3 cm2 V-1 s-1, and the 2D Te film is further assembled with silicon to form a heterojunction for self-drive photodetector, which can realize effective detection from visible to near infrared bands. The photodetectivity of the heterojunctions can reach 1.58×1011 Jones under the illumination of 400 nm@ 1.615 mW/cm2 and 2.08×108 Jones under the illumination of 1550 nm@ 1.511 mW/cm2 without bias. Our experiments demonstrate the potential of 2D tellurium thin films for wide band and near infrared integrated device applications.

3.
ACS Appl Mater Interfaces ; 15(32): 38496-38506, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37535705

ABSTRACT

The fabrication of α-FAPbI3 perovskite films usually requires high temperature annealing above 150 °C, and the residual tensile strain in the films seriously affects the stability of α-FAPbI3 by converting to δ-phase FAPbI3. Here, we use MASCN surface treatment of FAPbI3 films to induce a rotation of the coplanar octahedron [PbI6]4- to the metric octahedron for the strong interaction of SCN- with Pb2+, converting δ-FAPbI3 into α-FAPbI3 highly crystalline films at room temperature. The optimized FAPbI3 films have high stability due to releasing residual tensile strains after MASCN treatment. The efficiency of the MASCN-treated unannealed FAPbI3 PSC is 19.03%, while the optimized FAPbI3 annealed at 100 °C shows a maximum PCE of 21.95% on a small area. The solar cell stability for humidity, light, and thermal stability are significantly improved. The MASCN treated FAPbI3 achieves a PCE of 15.32% on a PSC module with an effective area of 9.6 cm2 and maintains an initial efficiency of 94.1% after 100 days of ageing at 85 °C and 85% humidity.

4.
Carbohydr Polym ; 306: 120625, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36746577

ABSTRACT

Natural polymers with abundant hydrophilic groups are potential candidates for humidity sensor designing. Unfortunately, most of natural polymers lack essential stretchability and high conductivity, which hinder their development in the field of flexible humidity sensor. Cooperation with rubbers and conductive nanometer materials is an effective method to make the best use of natural polymers in flexible humidity sensor. In this paper, a flexible and sensitive sensor with rapid response to humidity change is fabricated based on aldehyde-modified sodium carboxymethyl starch (ACMS), carboxylated styrene-butadiene rubber (XSBR) and Ag nanoflakes through film-forming method. The pre-prepared ACMS owns a better dispersibility in the aqueous phase and serves as reducing agent for formation of Ag nanoflakes. After the film-forming process, the composite film shows a strength of 5.66 MPa and a high stretchability with strain of 367 %. Besides, our sensor shows a rapider response to humidity change than the commercial electronic hygrometer that it takes only 1 s to respond to the humidity change from 25 % RH to 27 % RH. Therefore, the XSBR/ACMS/Ag sensor possesses an impressive sensitive response to slight sweat on human skin and breath, which could find applications in monitoring people's health and distinguish their physical condition.


Subject(s)
Polymers , Rubber , Humans , Humidity , Water
5.
Inorg Chem ; 61(49): 19702-19709, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36315132

ABSTRACT

The combination of topological phase and intrinsic beyond-room-temperature ferromagnetism is expected to realize the quantum anomalous Hall effect at a high temperature. However, no beyond-room-temperature intrinsic ferromagnetism has been reported in either topological insulator or topological crystalline insulator (TCI) so far. Here, we report Cr-doping in TCI-phase SnTe crystals which possess highly tunable beyond-room-temperature intrinsic ferromagnetism including Tc, magnetic moment, and coercivity by varying Cr contents and crystal thickness. With the increase of the Cr content, the Tc increases by 159 K from 221 to 380 K and the saturation magnetic moments increase by ∼23.6 times from 0.018 to 0.421 µB/f.u. This intrinsic beyond-room-temperature ferromagnetism is fully demonstrated by the anomalous Hall effect and magneto-optical Kerr effect in a single CrxSn1-xTe nanosheet. Moreover, the room-temperature tunneling magnetoresistance effect has been realized by using a CrxSn1-xTe flake, a Fe thin film, and a commercially compatible ultrathin AlOx tunneling barrier. This work indicates a great potential of CrxSn1-xTe crystals in room-temperature magnetoelectronic and spintronic devices.

6.
ACS Omega ; 6(14): 9857-9867, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869966

ABSTRACT

The Joule-Thomson effect is a key chemical thermodynamic property that is encountered in several industrial applications for CO2 capture and storage (CCS). An apparatus was designed and built for determining the Joule-Thomson effect. The accuracy of the device was verified by comparing the experimental data with the literature on nitrogen and carbon dioxide. New Joule-Thomson coefficient (µJT) measurements for three binary mixtures of (CO2 + N2) with molar compositions x N2 = (0.05, 0.10, 0.50) were performed in the temperature range between 298.15 and 423.15 K and at pressures up to 14 MPa. Three equations of state (GERG-2008 equation, AGA8-92DC, and the Peng-Robinson) were used to calculate the µJT compared with the corresponding experimental data. All of the equations studied here except PR have shown good prediction of µJT for (CO2 + N2) mixtures. The relative deviations with respect to experimental data for all (CO2 + N2) mixtures from the GERG-2008 were within the ±2.5% band, and the AGA8-DC92 EoSs were within ±3%. The Joule-Thomson inversion curve (JTIC) has also been modeled by the aforementioned EoSs, and a comparison was made between the calculated JTICs and the available literature data. The GERG-2008 and AGA8-92DC EoSs show good agreement in predicting the JTIC for pure CO2 and N2. The PR equation only matches well with the JTIC for pure N2, while it gives a poor prediction for pure CO2. For the (CO2 + N2) mixtures, the three equations all give similar results throughout the full span of JTICs. The temperature and pressure of the transportation and compression conditions in CCS are far lower than the corresponding predicted P inv,max and T inv,max for (CO2 + N2) mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL
...