Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Front Pediatr ; 12: 1308931, 2024.
Article in English | MEDLINE | ID: mdl-38720947

ABSTRACT

Background: Idiopathic scoliosis significantly affects the physical and mental health of children and adolescents, with varying prevalence rates in different regions. The occurrence of idiopathic scoliosis is associated with genetic regulation and biochemical factors, but the changes in exosome-derived miRNA profiles among idiopathic scoliosis patients remain unclear. This study aimed to determine the prevalence of idiopathic scoliosis in Yunnan Province, China, and identify key exosome-derived miRNAs in idiopathic scoliosis through a cohort study. Methods: From January 2018 to December 2020, a cross-sectional study on idiopathic scoliosis in children and adolescents was conducted in Yunnan Province. A total of 84,460 students from 13 cities and counties in Yunnan Province participated in a scoliosis screening program, with ages ranging from 7 to 19 years. After confirmation through screening and imaging results, patients with severe idiopathic scoliosis and normal control individuals were selected using propensity matching. Subsequently, plasma exosome-derived miRNA sequencing and RT-qPCR validation were performed separately. Based on the validation results, diagnostic performance analysis and target gene prediction were conducted for differential plasma exosome-derived miRNAs. Results: The overall prevalence of idiopathic scoliosis in children and adolescents in Yunnan Province was 1.10%, with a prevalence of 0.87% in males and 1.32% in females. The peak prevalence was observed at age 13. Among patients diagnosed with idiopathic scoliosis, approximately 12.8% had severe cases, and there were more cases of double curvature than of single curvature, with thoracolumbar curvature being the most common in the single-curvature group. Sequencing of plasma exosome-derived miRNAs associated with idiopathic scoliosis revealed 56 upregulated and 153 downregulated miRNAs. Further validation analysis confirmed that hsa-miR-27a-5p, hsa-miR-539-5p, and hsa-miR-1246 have potential diagnostic value. Conclusions: We gained insights into the epidemiological characteristics of idiopathic scoliosis in Yunnan Province and conducted further analysis of plasma exosome-derived miRNA changes in patients with severe idiopathic scoliosis. This study has provided new insights for the prevention and diagnosis of idiopathic scoliosis, paving the way for exploring clinical biomarkers and molecular regulatory mechanisms. However, further validation and elucidation of the detailed biological mechanisms underlying these findings will be required in the future.

2.
Article in English | MEDLINE | ID: mdl-38724231

ABSTRACT

BACKGROUND: Sleep fragmentation is a persistent problem throughout the course of Parkinson's disease (PD). However, the related neurophysiological patterns and the underlying mechanisms remained unclear. METHOD: We recorded subthalamic nucleus (STN) local field potentials (LFPs) using deep brain stimulation (DBS) with real-time wireless recording capacity from 13 patients with PD undergoing a one-night polysomnography recording, 1 month after DBS surgery before initial programming and when the patients were off-medication. The STN LFP features that characterised different sleep stages, correlated with arousal and sleep fragmentation index, and preceded stage transitions during N2 and REM sleep were analysed. RESULTS: Both beta and low gamma oscillations in non-rapid eye movement (NREM) sleep increased with the severity of sleep disturbance (arousal index (ArI)-betaNREM: r=0.9, p=0.0001, sleep fragmentation index (SFI)-betaNREM: r=0.6, p=0.0301; SFI-gammaNREM: r=0.6, p=0.0324). We next examined the low-to-high power ratio (LHPR), which was the power ratio of theta oscillations to beta and low gamma oscillations, and found it to be an indicator of sleep fragmentation (ArI-LHPRNREM: r=-0.8, p=0.0053; ArI-LHPRREM: r=-0.6, p=0.0373; SFI-LHPRNREM: r=-0.7, p=0.0204; SFI-LHPRREM: r=-0.6, p=0.0428). In addition, long beta bursts (>0.25 s) during NREM stage 2 were found preceding the completion of transition to stages with more cortical activities (towards Wake/N1/REM compared with towards N3 (p<0.01)) and negatively correlated with STN spindles, which were detected in STN LFPs with peak frequency distinguishable from long beta bursts (STN spindle: 11.5 Hz, STN long beta bursts: 23.8 Hz), in occupation during NREM sleep (ß=-0.24, p<0.001). CONCLUSION: Features of STN LFPs help explain neurophysiological mechanisms underlying sleep fragmentations in PD, which can inform new intervention for sleep dysfunction. TRIAL REGISTRATION NUMBER: NCT02937727.

3.
NPJ Digit Med ; 7(1): 122, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729977

ABSTRACT

Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.

4.
Psychiatr Serv ; : appips20230521, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38595116

ABSTRACT

Demand for mental health services has dramatically increased in recent years, raising concerns about the availability of service providers to meet these increased needs. One approach to expanding access to care is the use of highly qualified board-certified psychiatric pharmacists (BCPPs). However, the implementation of programs for integrating BCPPs has not been well characterized in community mental health settings. This column describes the development and implementation of a comprehensive practice model to incorporate BCPPs in a certified community behavioral health clinic. The authors report the results from the first 14 months of BCPP integration (based on 3,221 direct patient care interventions), offer recommendations, and highlight lessons learned.

5.
Adv Mater ; : e2401221, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563723

ABSTRACT

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.

6.
Adv Mater ; : e2400656, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519417

ABSTRACT

The advanced lithium-ion batteries that can tolerate zero-volt storage (ZVS) are in high demand for implantable medical devices and spacecraft. However, ZVS can raise the anode potential, leading to Cu current collector dissolution and solid-electrolyte interphase (SEI) degradation, especially at 37 °C. In this contribution, by quantitatively regulating the dosage of Li6CoO4 cathode additives, controllable potential of the working anode under abusive-discharge conditions is demonstrated. The addition of Li6CoO4 keeps zero-crossing potential (ZCP) and the potential of ZVS below 2.0 V (vs Li/Li+) for LiCoO2|mesocarbon microbead cells at 37 °C. The capacity retention ratio (CRR) increases from 69.1% and 35.9% to 98.6% and 90.8% after 10 and 20 days of ZVS, respectively. The Cu dissolution and SEI degradation are effectively suppressed, while the over-lithiated cathode exhibits high reversible capacity after ZVS. The limiting conditions of long-term ZVS are further explored and a corresponding guide map is designed. When quantitatively regulating ZCP and the potential in ZVS, Cu dissolution, SEI degradation, and irreversible conversion of the cathode constitute the limiting conditions. This contribution designs the most reasonable potential range for ZVS protection at 37 °C, and realizes the best CRR record through precise potential regulation for the first time.

7.
Int J Biol Macromol ; 265(Pt 1): 130807, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484808

ABSTRACT

Magnetic superhydrophobic materials have broad application prospect in oil-water separation. In this study, a magnetic and superhydrophobic aerogel with lamellar structure was successfully prepared using cellulose nanofibrils (CNF) as the skeleton, Fe3O4 as the magnetic ion, 1H, 1H, 2H, 2H trialkylfluorooctane triethoxysilane (FS) and 3-(2-aminoethyl amino)-propyl trimethoxysilane (AS) as the combined modifier. The prepared aerogel shows lower density (38.63 mg/cm3), excellent magnetic (15.13 emu/g), high elasticity and good oil sorption properties (21 g/g). In addition, FS/AS also exhibits excellent mechanical properties and superhydrophobic ability (water contact angle (WCA) of 151.9 ± 1.4°), as it provides sufficient toughness and low surface energy for the layer-branch structure. It should be noted that the entire preparation process is carried out in the aqueous phase, without the use of any organic solvents, providing a green oil-water separation strategy.


Subject(s)
Cellulose , Water , Elasticity , Radiopharmaceuticals , Hydrophobic and Hydrophilic Interactions
8.
Small ; : e2400141, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38431944

ABSTRACT

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2 ). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2 P@NiMoO4 /NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2 P@NiMoO4 /NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2 , respectively, surpassing that of Ni2 P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2 P/NF (120 h) and Ni(OH)2 /NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2- /PO4 3- from Ni2 P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO- .

9.
J Colloid Interface Sci ; 663: 971-980, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447410

ABSTRACT

Electrochemical upgrading methanol into value-added formate at the anode in alkaline media enables the boosting production of hydrogen fuel at the cathode with saved energy. To achieve such a cost-effective and efficient electrocatalytic process, herein this work presents a Mn-doped nickel iron layered double hydroxides supported on nickel foam, derived from a simple hydrothermal synthesis. This developed electrocatalyst could act as an efficient bifunctional electrocatalyst for methanol-to-formate with a high faradaic efficiency of nearly 100 %, and for hydrogen evolution reaction, at an external potential of 1.5 V versus reversible hydrogen electrode. Additionally, a current density of 131.1 mA cm-2 with a decay of merely 12.2 % over 120 h continuous long-term testing was generated in co-electrocatalysis of water/methanol solution. Further density functional theoretical calculations were used to unravel the methanol-to-formate reaction mechanism arising from the doping of Fe and/or Mn. This work offers a good example of co-electrocatalysis to produce formate and green hydrogen fuel using a bifunctional electrocatalyst.

10.
Small ; : e2311431, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366284

ABSTRACT

Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2 )-based energy systems (e.g., storing wind power as H2 ), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2 ) evolution material, can be boosted by employing tungstate (WO4 2- ) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2 , only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2- .

11.
Heliyon ; 10(3): e25042, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322952

ABSTRACT

With the development of in vitro diagnostics, extracting submicron scale particles from mixed body fluids samples is crucial. In recent years, microfluidic separation has attracted much attention due to its high efficiency, label-free, and inexpensive nature. Among the microfluidic-based separation, the separation based on ultrasonic standing waves has gradually become a powerful tool. A microfluid environment containing a tilted-angle ultrasonic standing surface acoustic wave (taSSAW) field has been widely adapted and designed to separate submicron particles for biochemical applications. This paper investigated submicron particle defection in microfluidics using taSSAWs analytically. Particles with 0.1-1 µm diameters were analyzed under acoustic pressure, flow rate, tilted angle, and SSAW frequency. According to different acoustic radiation forces acting on the particles, the motion of large-diameter particles was more likely to deflect to the direction of the nodal lines. Decreasing the input flow rate or increasing acoustic pressure and acoustic wave frequency can improve particle deflection. The tilted angle can be optimized by analyzing the simulation results. Based on the simulation analysis, we experimentally showed the separation of polystyrene microspheres (100 nm) from the mixed particles and exosomes (30-150 nm) from human plasma. This research results can provide a certain reference for the practical design of bioparticle separation utilizing acoustofluidic devices.

12.
J Colloid Interface Sci ; 663: 405-412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38412726

ABSTRACT

Electrochemical conversion of nitrite (NO2-) contaminant to green ammonia (NH3) is a promising approach to achieve the nitrogen cycle. The slow kinetics of the complex multi-reaction process remains a serious issue, and there is still a need to design highly effective and selective catalysts. Herein, we report that molybdenum doped cobalt oxide nanoarray on titanium mesh (Mo-Co3O4/TM) acts as a catalyst to facilitate electroreduction of NO2- to NH3. Such a catalyst delivers an extremely high Faradaic efficiency of 96.9 % and a corresponding NH3 yield of 651.5 µmol h-1 cm-2 at -0.5 V with strong stability. Density functional theory calculations reveal that the introduction of Mo can induce the redistribution of electrons around Co atoms and further strengthen the adsorption of NO2-, which is the key to facilitating the catalytic performance. Furthermore, the assembled battery based on Mo-Co3O4/TM suggests its practical application value.

13.
J Colloid Interface Sci ; 662: 596-603, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38367577

ABSTRACT

Seawater electrolysis is gaining recognition as a promising method for hydrogen production. However, severe anode corrosion caused by the high concentration of chloride ions (Cl-) poses a challenge for the long-term oxygen evolution reaction. Herein, an anti-corrosion strategy of oxalate anions intercalation in NiFe layered double hydroxide on nickel foam (NiFe-C2O42- LDH/NF) is proposed. The intercalation of these highly negatively charged C2O42- serves to establish electrostatic repulsion and impede Cl- adsorption. In alkaline seawater, NiFe-C2O42- LDH/NF requires an overpotential of 337 mV to gain the large current density of 1000 mA cm-2 and operates continuously for 500 h. The intercalation of C2O42- is demonstrated to significantly boost the activity and stability of NiFe LDH-based materials during alkaline seawater oxidation.

14.
Small ; : e2311055, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295001

ABSTRACT

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+ -reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1 , and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

15.
Article in English | MEDLINE | ID: mdl-38083561

ABSTRACT

Rehabilitation training for patients with motor disabilities usually requires specialized devices in rehabilitation centers. Home-based multi-purpose training would significantly increase treatment accessibility and reduce medical costs. While it is unlikely to equip a set of rehabilitation robots at home, we investigate the feasibility to use the general-purpose collaborative robot for rehabilitation therapies. In this work, we developed a new system for multi-purpose upper-limb rehabilitation training using a generic robot arm with human motor feedback and preference. We integrated surface electromyography, force/torque sensors, RGB-D cameras, and robot controllers with the Robot Operating System to enable sensing, communication, and control of the system. Imitation learning methods were adopted to imitate expert-provided training trajectories which could adapt to subject capabilities to facilitate in-home training. Our rehabilitation system is able to perform gross motor function and fine motor skill training with a gripper-based end-effector. We simulated system control in Gazebo and training effects (muscle activation level) in Open-Sim and evaluated its real performance with human subjects. For all the subjects enrolled, our system achieved better training outcomes compared to specialist-assisted rehabilitation under the same conditions. Our work demonstrates the potential of utilizing collaborative robots for in-home motor rehabilitation training.Clinical relevance-The collaborative robot system is capable of providing safe and effective training comparable to specialized rehabilitation robots, enabling possibilities of convenient rehabilitation training at home.


Subject(s)
Robotics , Humans , Electromyography , Physical Therapy Modalities , Range of Motion, Articular , Upper Extremity/physiology
16.
Lancet Digit Health ; 5(11): e754-e762, 2023 11.
Article in English | MEDLINE | ID: mdl-37770335

ABSTRACT

BACKGROUND: Hepatic echinococcosis is a severe endemic disease in some underdeveloped rural areas worldwide. Qualified physicians are in short supply in such areas, resulting in low rates of accurate diagnosis of this condition. In this study, we aimed to develop and evaluate an artificial intelligence (AI) system for automated detection and subtyping of hepatic echinococcosis using plain CT images with the goal of providing interpretable assistance to radiologists and clinicians. METHODS: We developed EDAM, an echinococcosis diagnostic AI system, to provide accurate and generalisable CT analysis for distinguishing hepatic echinococcosis from hepatic cysts and normal controls (no liver lesions), as well as subtyping hepatic echinococcosis as alveolar or cystic echinococcosis. EDAM includes a slice-level prediction model for lesion classification and segmentation and a patient-level diagnostic model for patient classification. We collected a plain CT database (n=700: 395 cystic echinococcosis, 122 alveolar echinococcosis, 130 hepatic cysts, and 53 normal controls) for developing EDAM, and two additional independent cohorts (n=156) for external validation of its performance and generalisation ability. We compared the performance of EDAM with 52 experienced radiologists in diagnosing and subtyping hepatic echinococcosis. FINDINGS: EDAM showed reliable performance in patient-level diagnosis on both the internal testing data (overall area under the receiver operating characteristic curve [AUC]: 0·974 [95% CI 0·936-0·994]; accuracy: 0·952 [0·939-0·965] for cystic echinococcosis, 0·981 [0·973-0·989] for alveolar echinococcosis; sensitivity: 0·966 [0·951-0·979] for cystic echinococcosis, 0·944 [0·908-0·970] for alveolar echinococcosis) and the external testing set (overall AUC: 0·953 [95% CI 0·840-0·973]; accuracy: 0·929 [0·915-0·947] for cystic echinococcosis, 0·936 [0·919-0·950] for alveolar echinococcosis; sensitivity: 0·913 [0·879-0·944] for cystic echinococcosis, 0·868 [0·841-0·897] for alveolar echinococcosis). The sensitivity of EDAM was robust across images from different CT manufacturers. EDAM outperformed most of the enrolled radiologists in detecting both alveolar echinococcosis and cystic echinococcosis. INTERPRETATION: EDAM is a clinically applicable AI system that can provide patient-level diagnoses with interpretable results. The accuracy and generalisation ability of EDAM demonstrates its potential for clinical use, especially in underdeveloped areas. FUNDING: Project of Qinghai Provincial Department of Science and Technology of China, National Natural Science Foundation of China, and Tsinghua-Fuzhou Institute of Data Technology Project. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Cysts , Deep Learning , Echinococcosis, Hepatic , Echinococcosis , Humans , Echinococcosis, Hepatic/diagnostic imaging , Retrospective Studies , Artificial Intelligence , Tomography, X-Ray Computed
17.
J Vis Exp ; (199)2023 09 08.
Article in English | MEDLINE | ID: mdl-37747205

ABSTRACT

Spinal cord stimulation (SCS) can effectively restore locomotor function after spinal cord injury (SCI). Because the motor neurons are the final unit to execute sensorimotor behaviors, directly studying the electrical responses of motor neurons with SCS can help us understand the underlying logic of spinal motor modulation. To simultaneously record diverse stimulus characteristics and cellular responses, a patch-clamp is a good method to study the electrophysiological characteristics at a single-cell scale. However, there are still some complex difficulties in achieving this goal, including maintaining cell viability, quickly separating the spinal cord from the bony structure, and using the SCS to successfully induce action potentials. Here, we present a detailed protocol using patch-clamp to study the electrical responses of motor neurons to SCS with high spatiotemporal resolution, which can help researcher improve their skills in separating the spinal cord and maintaining the cell viability at the same time to smoothly study the electrical mechanism of SCS on motor neuron and avoid unnecessary trial and mistake.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Humans , Motor Neurons , Action Potentials
18.
Micromachines (Basel) ; 14(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37763859

ABSTRACT

Love surface acoustic wave (L-SAW) sensors are miniaturized, easy to integrate, and suitable for detection in liquid environments. In this paper, an L-SAW sensor with a thin Si3N4-SiO2 double-covered layer was proposed for samples with small mass loads. The output response, phase velocity of the acoustic wave, and the mass sensitivity were analyzed using the finite element method (FEM). The simulation results show that the Si3N4 layer with high wave velocity greatly weakens the limitation of SiO2 on the phase velocity. The phase velocity can reach about 4300 m/s, which can increase the frequency shift when the same mass load is applied. Within a certain range, the mass sensitivity of the sensor is enhanced with the increase in the total thickness of the waveguiding layer and the thickness ratio of Si3N4 in the double-covered layer. When the thickness ratio is 1:2, the peak value of the mass sensitivity of the sensor is approximately 50% higher than that achieved with only the SiO2 waveguiding layer. The surface average stress of the delay line region follows the same trend as the mass sensitivity. The increase in mass sensitivity is the result of the heightened stress on the sensor surface. This L-SAW sensor, featuring a double-covered waveguiding layer, demonstrates high sensitivity and a simple structure. The simulation results lay a foundation for the design and manufacture of SAW sensors.

19.
Acta Pharm ; 73(3): 503-513, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37708964

ABSTRACT

Xanthoxyletin is a vital plant-derived bioactive coumarin. It has been shown to exhibit anticancer effects against different human cancers. Nonetheless, the anticancer effects of xanthoxyletin against human pancreatic cancer cells have not been evaluated. Against this backdrop, the present study was designed to evaluate the anticancer effects of xanthoxyletin in human pancreatic cancer cells and to decipher the underlying molecular mechanisms. The results revealed a significant (p < 0.05) upregulation of receptor activator of NF-kappaB (RANK), receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG) in human pancreatic tissues and cell lines at both transcriptional and translational levels. The administration of pancreatic cancer cells with xanthoxyletin diminished the viability of Capan-2 cells in a concentration-dependent manner and led to a significant decline in RANK, RANKL, and OPG expression. Silencing of RANK and xanthoxyletin treatment declined the viability of Capan-2 pancreatic cancer cells via induction of apoptosis. However, pancreatic cancer cells overexpressing RANK could rescue the growth inhibitory effects. Collectively, xanthoxyletin targets the RANK/RANKL signaling pathway in pancreatic cancer cells to induce cell apoptosis and may prove to be an important lead molecule.


Subject(s)
Pancreatic Neoplasms , Humans , Receptor Activator of Nuclear Factor-kappa B/genetics , Pancreatic Neoplasms/drug therapy , Signal Transduction , Coumarins/pharmacology , Pancreatic Neoplasms
20.
Brain Sci ; 13(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37508908

ABSTRACT

An imbalance between excitation (E) and inhibition (I) in the brain has been identified as a key pathophysiology of epilepsy over the years. The hippocampus and amygdala in the limbic system play a crucial role in the initiation and conduction of epileptic seizures and are often referred to as the transfer station and amplifier of seizure activities. Existing animal and imaging studies reveal that the hippocampus and amygdala, which are significant parts of the vagal afferent network, can be modulated in order to generate an antiepileptic effect. Using stereo-electroencephalography (SEEG) data, we examined the E/I imbalance in the hippocampus and amygdala of ten drug-resistant epilepsy children treated with acute vagus nerve stimulation (VNS) by estimating the 1/f power slope of hippocampal and amygdala signals in the range of 1-80 Hz. While the change in the 1/f power slope from VNS-BASE varied between different stimulation amplitudes and brain regions, it was more prominent in the hippocampal region. In the hippocampal region, we found a flatter 1/f power slope during VNS-ON in patients with good responsiveness to VNS under the optimal stimulation amplitude, indicating that the E/I imbalance in the region was improved. There was no obvious change in 1/f power slope for VNS poor responders. For VNS non-responders, the 1/f power slope slightly increased when the stimulation was applied. Overall, this study implies that the regulation of E/I imbalance in the epileptic brain, especially in the hippocampal region, may be an acute intracranial effect of VNS.

SELECTION OF CITATIONS
SEARCH DETAIL
...