Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38930723

ABSTRACT

High-aspect-ratio micro- and mesoscale metallic components (HAR-MMMCs) can play some unique roles in quite a few application fields, but their cost-efficient fabrication is significantly difficult to accomplish. To address this issue, this study proposes a necked-entrance through-mask (NTM) periodically lifting electroforming technology with an impinging jet electrolyte supply. The effects of the size of the necked entrance of the through-mask and the jet speed of the electrolyte on electrodeposition behaviors, including the thickness distribution of the growing top surface, deposition defect formation, geometrical accuracy, and electrodeposition rate, are investigated numerically and experimentally. Ensuring an appropriate size of the necked entrance can effectively improve the uniformity of deposition thickness, while higher electrolyte flow velocities help enhance the density of the components under higher current densities, reducing the formation of deposition defects. It was shown that several precision HAR-MMMCs with an AR of 3.65 and a surface roughness (Ra) of down to 36 nm can be achieved simultaneously with a relatively high deposition rate of 3.6 µm/min and thickness variation as low as 1.4%. Due to the high current density and excellent mass transfer effects in the electroforming conditions, the successful electroforming of components with a Vickers microhardness of up to 520.5 HV was achieved. Mesoscale precision columns with circular and Y-shaped cross-sections were fabricated by using this modified through-mask movable electroforming process. The proposed NTM periodic lifting electroforming method is promisingly advantageous in fabricating precision HAR-MMMCs cost-efficiently.

2.
Micromachines (Basel) ; 15(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38258195

ABSTRACT

An ultra-narrow precision slit with a width of less than ten micrometers is the key structure of some optical components, but the fabrication of these structures is still very difficult to accomplish. To fabricate these slits, this paper proposed a periodically reducing current over-growth electroforming process. In the periodically reducing current over-growth electroforming, the electric current applied to the electrodeposition process is periodically stepped down rather than being constant. Simulations and experimentation studies were carried out to verify the feasibility of the proposed process, and further optimization of process parameters was implemented experimentally to achieve the desired ultra-narrow precision slits. The current values were: I1=Iinitial, I2=0.75Iinitial at Qc=0.5Qt, I3=0.5Iinitial at Qc=0.75Qt,respectively. It was shown that, compared with conventional constant current over-growth electroforming, the proposed process can significantly improve the surface quality and geometrical accuracy of the fabricated slits and can markedly enhance the achievement of the formed ultra-narrow slits. With the proposed process, slits with a width of down to 5 ± 0.1 µm and a surface roughness of less than 62.8 nm can be easily achieved. This can improve the determination sensitivity and linear range of the calibration curves of spectral imagers and food and chemical analysis instruments. Periodically reducing current over-growth electroforming is effective and advantageous in fabricating ultra-narrow precision slits.

SELECTION OF CITATIONS
SEARCH DETAIL