Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Type of study
Publication year range
1.
J Biol Chem ; 293(15): 5649-5658, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29475947

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl- channel that apparently has evolved from an ancestral active transporter. Key to the CFTR's switch from pump to channel function may have been the appearance of one or more "lateral portals." Such portals connect the cytoplasm to the transmembrane channel pore, allowing a continuous pathway for the electrodiffusional movement of Cl- ions. However, these portals remain the least well-characterized part of the Cl- transport pathway; even the number of functional portals is uncertain, and if multiple portals do exist, their relative functional contributions are unknown. Here, we used patch-clamp recording to identify the contributions of positively charged amino acid side chains located in CFTR's cytoplasmic transmembrane extensions to portal function. Mutagenesis-mediated neutralization of several charged side chains reduced single-channel Cl- conductance. However, these same mutations differentially affected channel blockade by cytoplasmic suramin and Pt(NO2)42- anions. We considered and tested several models by which the contribution of these positively charged side chains to one or more independent or non-independent portals to the pore could affect Cl- conductance and interactions with blockers. Overall, our results suggest the existence of a single portal that is lined by several positively charged side chains that interact electrostatically with both Cl- and blocking anions. We further propose that mutations at other sites indirectly alter the function of this single portal. Comparison of our functional results with recent structural information on CFTR completes our picture of the overall molecular architecture of the Cl- permeation pathway.


Subject(s)
Cell Membrane/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mutation , Animals , Cell Line , Cell Membrane/chemistry , Cell Membrane/genetics , Cricetinae , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Ion Transport/physiology , Protein Domains
2.
Br J Pharmacol ; 167(5): 1062-75, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22612315

ABSTRACT

BACKGROUND AND PURPOSE: There is great interest in the development of potentiator drugs to increase the activity of the cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis. We tested the ability of several anions to potentiate CFTR activity by a novel mechanism. EXPERIMENTAL APPROACH: Patch clamp recordings were used to investigate the ability of extracellular pseudohalide anions (Co(CN)(6) (3-) , Co(NO(2) )(6) (3-) , Fe(CN)(6) (3-) , IrCl(6) (3-) , Fe(CN)(6) (4-) ) to increase the macroscopic conductance of mutant CFTR in intact cells via interactions with cytoplasmic blocking anions. Mutagenesis of CFTR was used to identify a possible molecular mechanism of action. Transepithelial short-circuit current recordings from human airway epithelial cells were used to determine effects on net anion secretion. KEY RESULTS: Extracellular pseudohalide anions were able to increase CFTR conductance in intact cells, as well as increase anion secretion in airway epithelial cells. This effect appears to reflect the interaction of these substances with a site on the extracellular face of the CFTR protein. CONCLUSIONS AND IMPLICATIONS: Our results identify pseudohalide anions as increasing CFTR function by a previously undescribed molecular mechanism that involves an interaction with an extracellular site on the CFTR protein. Future drugs could utilize this mechanism to increase CFTR activity in cystic fibrosis, possibly in conjunction with known intracellularly-active potentiators.


Subject(s)
Cobalt/pharmacology , Cyanides/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Iridium/pharmacology , Platinum Compounds/pharmacology , Animals , Cell Line , Cricetinae , Humans , Mutation
3.
J Membr Biol ; 243(1-3): 15-23, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21796426

ABSTRACT

Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.


Subject(s)
Cysteine/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mutant Proteins/metabolism , Animals , Anions/chemistry , Cells, Cultured , Cricetinae , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Intracellular Fluid/metabolism , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutation , Permeability
4.
Am J Physiol Cell Physiol ; 300(1): C65-74, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20926782

ABSTRACT

The CFTR contributes to Cl⁻ and HCO3⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO3⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO3⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO3⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO3⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO3⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Animals , Bicarbonates/metabolism , Biological Transport, Active/physiology , Cell Line , Chlorides/metabolism , Cricetinae , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gluconates/metabolism , Humans , Mutation
5.
J Gen Physiol ; 135(3): 229-45, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20142516

ABSTRACT

Rapid chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is dependent on the presence of fixed positive charges in the permeation pathway. Here, we use site-directed mutagenesis and patch clamp recording to show that the functional role played by one such positive charge (K95) in the inner vestibule of the pore can be "transplanted" to a residue in a different transmembrane (TM) region (S1141). Thus, the mutant channel K95S/S1141K showed Cl(-) conductance and open-channel blocker interactions similar to those of wild-type CFTR, thereby "rescuing" the effects of the charge-neutralizing K95S mutation. Furthermore, the function of K95C/S1141C, but not K95C or S1141C, was inhibited by the oxidizing agent copper(II)-o-phenanthroline, and this inhibition was reversed by the reducing agent dithiothreitol, suggesting disulfide bond formation between these two introduced cysteine side chains. These results suggest that the amino acid side chains of K95 (in TM1) and S1141 (in TM12) are functionally interchangeable and located closely together in the inner vestibule of the pore. This allowed us to investigate the functional effects of increasing the number of fixed positive charges in this vestibule from one (in wild type) to two (in the S1141K mutant). The S1141K mutant had similar Cl(-) conductance as wild type, but increased susceptibility to channel block by cytoplasmic anions including adenosine triphosphate, pyrophosphate, 5-nitro-2-(3-phenylpropylamino)benzoic acid, and Pt(NO(2))(4)(2-) in inside-out membrane patches. Furthermore, in cell-attached patch recordings, apparent voltage-dependent channel block by cytosolic anions was strengthened by the S1141K mutation. Thus, the Cl(-) channel function of CFTR is maximal with a single fixed positive charge in this part of the inner vestibule of the pore, and increasing the number of such charges to two causes a net decrease in overall Cl(-) transport through a combination of failure to increase Cl(-) conductance and increased susceptibility to channel block by cytosolic substances.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Ion Channel Gating/physiology , Membrane Potentials/physiology , Cations , Humans , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Protein Conformation , Structure-Activity Relationship
7.
Sheng Li Xue Bao ; 56(4): 471-5, 2004 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-15322681

ABSTRACT

This study was conducted to determine the effect of pregnanolone (PGN) on blood pressure of a rat model of stress-induced hypertension (SIH). This model was established by applying electric shock to animal feet together with noise. PGN was administered intraperitoneally at 0.24 mg/kg.d(-1) and blood pressure, angiotensin II (Ang II) levels, and the expression of Fos-like protein immunoreactive (FLI) neurons in brain areas were determined. Rats were randomly divided into five groups: (1) control, (2) stressed for 1 h, (3) stressed for 1 h after PGN pretreatment, (4) stressed for a 2 h session, twice a day, for 15 d, and (5) stressed for a 2 h session after PGN pretreatment, twice a day, for 15 d. The results showed that increased systolic pressure of tail artery caused by a 15-d stress treatment was significantly reduced by PGN pretreatment (P<0.001). Ang II levels, measured by radioactive immunoreactivity, were significantly elevated (P<0.001) after the rats were stressed for 1 h or 15 d, the Ang II level was significantly reduced by PGN treatment in both 1 h and 15 d stress groups (P<0.05). Only a small number of FLI neurons were found in the brain areas of the control group, 15 d stress group, and 15 d stress with PGN group. In the 1 h stress group, more FLI neurons were found in the lateral habenular nucleus, the medial habenular nucleus, the paraventricular nucleus, the central nucleus of amgydaloid and the lateral hypothalamus compared with the control group. PGN pretreatment significantly prevented the increase in the number of FLI neurons. These results indicate that PGN pretreatment prevents elevation of tail artery systolic pressure in SIH rats and that this effect of PGN may be mediated through reducing Ang II level and inhibiting the activity of cardiovascular center involved in stress.


Subject(s)
Angiotensin II/metabolism , Blood Pressure/drug effects , Hypertension/physiopathology , Pregnanolone/pharmacology , Animals , Brain/metabolism , Electric Stimulation , Hypertension/etiology , Male , Proto-Oncogene Proteins c-fos/biosynthesis , Random Allocation , Rats , Rats, Wistar , Stress, Physiological/complications
8.
Article in Chinese | MEDLINE | ID: mdl-21166225

ABSTRACT

AIM: To investigate whether if the Habenula is the main relay involved in the vasopressor effect induced by the stimulus of insular cortex, central-, lateral amygdaloid nucleus respectively. METHODS: Electrostimulation of the nuclei mention above respectively, and microinjection of lidocaine into Habenula unilaterally and bilaterally. RESULTS: When INS or CeA was stimulated, inducing an obvious increase of blood pressure. To stimulate INS or CeA after microinjecting lidocaine into Hb 5 minutes, the amplitudes of the vasopressor responses were decreased significantly, and the decrease of the bilaterally was larger (decreased value: 41.7% in INS, 46.1% in CeA) than that of unilaterally (decreased value: 36.9% in INS, 39.6% in CeA). CONCLUSION: Habenula is one of the main relays involved in the vasopressor effects induced by the stimulus of insular cortex, central-, lateral amygdaloid nucleus.


Subject(s)
Amygdala/physiology , Blood Pressure/physiology , Cerebral Cortex/physiology , Habenula/physiology , Animals , Electric Stimulation , Neural Pathways/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL