Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
IBRO Neurosci Rep ; 17: 220-234, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39282551

ABSTRACT

Adolescence is an important phase for the structural and functional development of the brain. The immaturity of adolescent brain development is associated with high susceptibility to exogenous disturbances, including alcohol. In this study, the acquisition of conditioned place preference (CPP) in adolescent mice by alcohol (2 g/kg) and the parvalbumin-positive interneurons (PV+ interneurons), oligodendrocyte lineage cells (OPCs), and myelination in the medial prefrontal cortex (mPFC) were assessed. We aim to determine the age- and subregional-specificity of the effects of alcohol. Alcohol (2 g/kg) was injected intraperitoneally on even days, and saline was injected intraperitoneally on odd days. The control group received a continuous intraperitoneal injection with saline. Differences in alcohol-induced CPP acquisition were assessed, followed by immunohistochemical staining. The results showed a pronounced CPP acquisition in 4- and 5-week-old mice. In the mPFC, there were reduced PV+ interneurons and OPCs in 3-week-old mice and reduced oligodendrocyte numbers in 4-week-old mice. The 5-week-old mice showed impaired myelination and a decrease in the number of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC. Since the alterations in 5-week-old mice are more pronounced, we further explored the mPFC-associated subregional-specificity. In the alcohol-exposed mice, the oligodendrocyte numbers were decreased in the anterior cingulate cortex (ACC), PV+ interneuron numbers were declined in the prelimbic cortex (PL), and the number of oligodendrocytes, PV+ interneurons, and OPCs was also decreased with impaired myelination in the infralimbic cortex (IL). Our data suggest that adolescent alcohol exposure notably affected the acquisition of CPP, myelin formation, and the counts of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC in 5-week-old mice. Also, the IL subregion was the worst-affected subregion of the mPFC in alcohol-exposed 5-week-old mice. It reveals that the effects of alcohol on adolescence and its mPFC myelination show obvious age- and subregional-specificity.

2.
Angew Chem Int Ed Engl ; : e202416856, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291894

ABSTRACT

Flexible crystals with unique mechanical properties have presented enormous applications in optoelectronics, soft robotics and sensors. However, there have been no reports of low-temperature-resistant flexible crystals with second-order nonlinear optical properties (NLO). Here, we report the flexible chiral Schiff-base crystals capable of efficient second harmonic generation (SHG). Both enantiomers and racemic modifications of these crystals are mechanically flexible in two directions at both room temperature and at -196 °C, although their mechanical responses differ. The enantiomers display SHG with an intensity of up to 12 times that of potassium dihydrogenphosphate (KDP) when pumped at 980 nm, and they also have high laser-induced damage thresholds (LDT). Even when bent, the crystals retain strong second harmonic generation, although with a different intensity distribution depending on the polarization, compared to when they are straight. This work describes the first instance of flexible organic crystal with NLO properties and lays the foundation for the development of mechanically flexible organic NLO materials.

3.
Heliyon ; 10(14): e34309, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100455

ABSTRACT

Background: Lower Extremity Computed Tomography Angiography (CTA) is an effective non-invasive diagnostic tool for lower extremity artery disease (LEAD). This study aimed to develop an automatic classification model based on a coordinate-aware 3D deep neural network to evaluate the degree of arterial stenosis in lower extremity CTA. Methods: This retrospective study included 277 patients who underwent lower extremity CTA between May 1, 2017, and August 31, 2023. Radiologists annotated the lower extremity artery segments according to the degree of stenosis, and 12,450 3D patches containing the regions of interest were segmented to construct the dataset. A Coordinate-Aware Three-Dimensional Neural Network was implemented to classify the degree of stenosis of the lower extremity arteries with these patches. Metrics including accuracy, sensitivity, specificity, F1 score, and receiver operating characteristic (ROC) curves were used to evaluate the performance of the proposed model. Results: The accuracy, F1 score, and area under the ROC curve (AUC) of our proposed model were 93.08 %, 91.96 %, and 99.15 % for the above-knee arteries, and 91.70 %, 89.67 %, and 98.2 % respectively for below-knee arteries. The results of our proposed model exhibited a lead of 4-5% in accuracy score over the 3D baseline model and a lead of more than 10 % over the 2D baseline model. Conclusion: We successfully implemented a deep learning model, a promising tool for assisting radiologists in evaluating lower extremity arterial stenosis on CT angiography.

4.
J Ethnopharmacol ; 335: 118703, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39154668

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pueraria lobata (Willd.) Ohwi is a traditional medicinal and edible homologous plant rich in flavonoids, triterpenes, saponins, polysaccharides and other chemical components. At present, studies have shown that Pueraria lobata radix (PR) has the effect of lowering blood sugar, improving insulin sensitivity and inhibiting obesity. However, the specific mechanism of PR inhibits obesity is still unclear, and there are few researches on the anti-obesity effect of PR through the combination of network pharmacology and experiment. AIM OF THE STUDY: Pharmacology, molecular docking technology and experimental verification through the network, revealing the PR the material basis of obesity and the potential mechanism. METHODS AND RESULTS: The present study used network pharmacology techniques to investigate the therapeutic effect and mechanism of action of PR. Through relevant databases, a total of 6 main chemical components and 257 potential targets were screened. Protein interaction analysis shows that AKT1, AKR1B1, PPARG, MMP9, TNF, TP53, BAD, and BCL2 are core targets. Enrichment analysis shows that the pathway of PR in preventing obesity involves the cancer signaling pathway and the PI3K-Akt signaling pathway, which may be the main pathways of action. Further molecular docking verification indicates that its core target exhibits good binding activity with 4 compounds: formononectin, purerin, 7,8,4 '- trihydroxide and daidzein. Using the ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) technology to detected and confirmed these main compounds. Cell experiment results revealed that puerarin inhibits cell proliferation and differentiation in a concentration dependent manner, significantly promoting cell apoptosis and affecting cell migration. Animal experiments have shown that puerarin reduces food intake and weight gain in mice. It was found that puerarin can upregulate HDL and downregulate TC, TG, and LDL blood biochemical indicators. Western blot results showed that puerarin significantly inhibited the expression of AKT1, AKR1B1, MMP9, TNF, TP53, BCL2, PPARG, and significantly increased the expression of BAD protein at both cellular and animal levels. CONCLUSION: The present study established a method for measuring PR content and predicted its active ingredients and their mechanisms of action in the treatment of obesity, providing a theoretical basis for further research.


Subject(s)
Anti-Obesity Agents , Molecular Docking Simulation , Obesity , Pueraria , Pueraria/chemistry , Animals , Obesity/drug therapy , Obesity/metabolism , Mice , Anti-Obesity Agents/pharmacology , Network Pharmacology , Male , 3T3-L1 Cells , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plant Extracts/chemistry , Signal Transduction/drug effects , Isoflavones/pharmacology , Humans
5.
Adv Mater ; 36(35): e2403088, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003616

ABSTRACT

3D printing polymer or metal can achieve complicated structures while lacking multifunctional performance. Combined printing of polymer and metal is desirable and challenging due to their insurmountable mismatch in melting-point temperatures. Here, a novel volume-metallization 3D-printed polymer composite (VMPC) with bicontinuous phases for enabling coupled structure and function, which are prepared by infilling low-melting-point metal (LM) to controllable porous configuration is reported. Based on vacuum-assisted low-pressure conditions, LM is guided by atmospheric pressure action and overcomes surface tension to spread along the printed polymer pore channel, enabling the complete filling saturation of porous structures for enhanced tensile strength (up to 35.41 MPa), thermal (up to 25.29 Wm-1K-1) and electrical (>106 S m-1) conductivities. The designed 3D-printed microstructure-oriented can achieve synergistic anisotropy in mechanics (1.67), thermal (27.2), and electrical (>1012) conductivities. VMPC multifunction is demonstrated, including customized 3D electronics with elevated strength, electromagnetic wave-guided transport and signal amplification, heat dissipation device for chip temperature control, and storage components for thermoelectric generator energy conversion with light-heat-electricity.

6.
Science ; 385(6707): 416-421, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052813

ABSTRACT

Enzymes capable of assimilating fluorinated feedstocks are scarce. This situation poses a challenge for the biosynthesis of fluorinated compounds used in pharmaceuticals, agrochemicals, and materials. We developed a photoenzymatic hydrofluoroalkylation that integrates fluorinated motifs into olefins. The photoinduced promiscuity of flavin-dependent ene-reductases enables the generation of carbon-centered radicals from iodinated fluoroalkanes, which are directed by the photoenzyme to engage enantioselectively with olefins. This approach facilitates stereocontrol through interaction between a singular fluorinated unit and the enzyme, securing high enantioselectivity at ß, γ, or δ positions of fluorinated groups through enzymatic hydrogen atom transfer-a process that is notably challenging with conventional chemocatalysis. This work advances enzymatic strategies for integrating fluorinated chemical feedstocks and opens avenues for asymmetric synthesis of fluorinated compounds.


Subject(s)
Alkenes , Halogenation , Hydrocarbons, Fluorinated , Oxidoreductases , Photochemical Processes , Alkenes/chemistry , Alkylation , Hydrocarbons, Fluorinated/chemistry , Oxidoreductases/chemistry , Stereoisomerism , Catalysis
7.
Diabetes Metab J ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043444

ABSTRACT

Background: Disorders of the blood-brain barrier (BBB) arising from diabetes mellitus are closely related to diabetic encephalopathy. Previous research has suggested that neuron-glia antigen 2 (NG2)-glia plays a key role in maintaining the integrity of the BBB. However, the mechanism by which NG2-glia regulates the diabetic BBB remains unclear. Methods: Type 2 diabetes mellitus (T2DM) db/db mice and db/m mice were used. Evans-Blue BBB permeability tests and transmission electron microscopy techniques were applied. Tight junction proteins were assessed by immunofluorescence and transmission electron microscopy. NG2-glia number and signaling pathways were evaluated by immunofluorescence. Detection of matrix metalloproteinase-9 (MMP-9) in serum was performed using enzyme-linked immunosorbent assay (ELISA). Results: In T2DM db/db mice, BBB permeability in the hippocampus significantly increased from 16 weeks of age, and the structure of tight junction proteins changed. The number of NG2-glia in the hippocampus of db/db mice increased around microvessels from 12 weeks of age. Concurrently, the expression of MMP-9 increased in the hippocampus with no change in serum. Sixteen- week-old db/db mice showed activation of the Wnt/ß-catenin signaling in hippocampal NG2-glia. Treatment with XAV-939 improved structural and functional changes in the hippocampal BBB and reduced MMP-9 secretion by hippocampal NG2-glia in db/db mice. It was also found that the upregulation of ß-catenin protein in NG2-glia in the hippocampus of 16-week-old db/db mice was significantly alleviated by treatment with XAV-939. Conclusion: The results indicate that NG2-glia can lead to structural and functional disruption of the diabetic BBB by activating Wnt/ß-catenin signaling, upregulating MMP-9, and degrading tight junction proteins.

8.
ACS Chem Biol ; 19(7): 1440-1446, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38901034

ABSTRACT

Peptide-bile acid hybrids offer promising drug candidates due to enhanced pharmacological properties, such as improved protease resistance and oral bioavailability. However, it remains unknown whether bile acids can be incorporated into peptide chains by the ribosome to produce a peptide-bile acid hybrid macrocyclic peptide library for target-based de novo screening. In this study, we achieved the ribosomal incorporation of lithocholic acid (LCA)-d-tyrosine into peptide chains. This led to the construction of a peptide-LCA hybrid macrocyclic peptide library, which enabled the identification of peptides TP-2C-4L3 (targeting Trop2) and EP-2C-4L5 (targeting EphA2) with strong binding affinities. Notably, LCA was found to directly participate in binding to EphA2 and confer on the peptides improved stability and resistance to proteases. Cell staining experiments confirmed the high specificity of the peptides for targeting Trop2 and EphA2. This study highlights the benefits of LCA in peptides and paves the way for de novo discovery of stable peptide-LCA hybrid drugs.


Subject(s)
Lithocholic Acid , Peptide Library , Peptides , Ribosomes , Lithocholic Acid/chemistry , Lithocholic Acid/analogs & derivatives , Lithocholic Acid/metabolism , Ribosomes/metabolism , Humans , Peptides/chemistry , Peptides/metabolism , Receptor, EphA2/metabolism , Receptor, EphA2/chemistry , Drug Discovery , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism
9.
Cell Chem Biol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38821064

ABSTRACT

Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.

10.
AMB Express ; 14(1): 57, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753111

ABSTRACT

Respiratory coronaviruses (RCoVs) significantly threaten human health, necessitating the development of an ex vivo respiratory culture system for investigating RCoVs infection. Here, we successfully generated a porcine precision-cut lung slices (PCLSs) culture system, containing all resident lung cell types in their natural arrangement. Next, this culture system was inoculated with a porcine respiratory coronavirus (PRCV), exhibiting clinical features akin to humans who were infected by SARS-CoV-2. The results demonstrated that PRCV efficiently infected and replicated within PCLSs, targeting ciliated cells in the bronchioles, terminal bronchioles, respiratory bronchioles, and pulmonary alveoli. Additionally, through RNA-Seq analysis of the innate immune response in PCLSs following PRCV infection, expression levels of interferons, inflammatory cytokines and IFN stimulated genes were significantly upregulated. This ex vivo model may not only offer new insights into PRCV infection in the porcine respiratory tract but also serve as a valuable tool for studying human respiratory CoVs infection.

11.
J Am Chem Soc ; 146(15): 10716-10722, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579164

ABSTRACT

Chiral alkyl amines are common structural motifs in pharmaceuticals, natural products, synthetic intermediates, and bioactive molecules. An attractive method to prepare these molecules is the asymmetric radical hydroamination; however, this approach has not been explored with dialkyl amine-derived nitrogen-centered radicals since designing a catalytic system to generate the aminium radical cation, to suppress deleterious side reactions such as α-deprotonation and H atom abstraction, and to facilitate enantioselective hydrogen atom transfer is a formidable task. Herein, we describe the application of photoenzymatic catalysis to generate and harness the aminium radical cation for asymmetric intermolecular hydroamination. In this reaction, the flavin-dependent ene-reductase photocatalytically generates the aminium radical cation from the corresponding hydroxylamine and catalyzes the asymmetric intermolecular hydroamination to furnish the enantioenriched tertiary amine, whereby enantioinduction occurs through enzyme-mediated hydrogen atom transfer. This work highlights the use of photoenzymatic catalysis to generate and control highly reactive radical intermediates for asymmetric synthesis, addressing a long-standing challenge in chemical synthesis.

12.
Nat Chem ; 16(8): 1320-1329, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38528101

ABSTRACT

Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries. However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machinery from other natural product families. Here we report lipoavitides, a class of RiPP/fatty-acid hybrid lipopeptides that display a unique, putatively membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N terminus. The HMP is formed via condensation of isobutyryl-coenzyme A (isobutyryl-CoA) and methylmalonyl-CoA catalysed by a 3-ketoacyl-(acyl carrier protein) synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty-acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.


Subject(s)
Ribosomes , Acylation , Ribosomes/metabolism , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/genetics , Protein Processing, Post-Translational , Peptides/chemistry , Peptides/metabolism , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/biosynthesis , Fatty Acids/chemistry , Fatty Acids/metabolism
13.
Nat Commun ; 15(1): 1179, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332017

ABSTRACT

The active-cooling elastomer concept, originating from vascular thermoregulation for soft biological tissue, is expected to develop an effective heat dissipation method for human skin, flexible electronics, and soft robots due to the desired interface mechanical compliance. However, its low thermal conduction and poor adaptation limit its cooling effects. Inspired by the bone structure, this work reports a simple yet versatile method of fabricating arbitrary-geometry liquid metal skeleton-based elastomer with bicontinuous Gyroid-shaped phases, exhibiting high thermal conductivity (up to 27.1 W/mK) and stretchability (strain limit >600%). Enlightened by the vasodilation principle for blood flow regulation, we also establish a hydraulic-driven conformal morphing strategy for better thermoregulation by modulating the hydraulic pressure of channels to adapt the complicated shape with large surface roughness (even a concave body). The liquid metal active-cooling elastomer, integrated with the flexible thermoelectric device, is demonstrated with various applications in the soft gripper, thermal-energy harvesting, and head thermoregulation.

14.
J Med Chem ; 67(3): 1961-1981, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38272464

ABSTRACT

Hyperactivated KRAS mutations fuel tumorigenesis and represent attractive targets for cancer treatment. While covalent inhibitors have shown clinical benefits against the KRASG12C mutant, advancements for non-G12C mutants remain limited, highlighting the urgent demand for pan-KRAS inhibitors. RNA G-quadruplexes (rG4s) in the 5'-untranslated region of KRAS mRNA can regulate KRAS translation, making them promising targets for pan-KRAS inhibitor development. Herein, we designed and synthesized 50 novel coumarin-quinolinium derivatives, leveraging our previously developed rG4-specific ligand, QUMA-1. Notably, several compounds exhibited potent antiproliferative activity against cancer cells as pan-KRAS translation inhibitors. Among them, 15a displayed exceptional capability in stabilizing KRAS rG4s, suppressing KRAS translation, and consequently modulating MAPK and PI3K-AKT pathways. 15a induced cell cycle arrest, prompted apoptosis in KRAS-driven cancer cells, and effectively inhibited tumor growth in a KRAS mutant xenograft model. These findings underscore the potential of 15a as a pan-KRAS translation inhibitor, offering a novel and promising approach to target various KRAS-driven cancers.


Subject(s)
G-Quadruplexes , Proto-Oncogene Proteins p21(ras) , Humans , Cell Line, Tumor , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Synthesis Inhibitors , Mutation
15.
Nat Chem ; 16(2): 277-284, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37973942

ABSTRACT

Strategies for achieving asymmetric catalysis with azaarenes have traditionally fallen short of accomplishing remote stereocontrol, which would greatly enhance accessibility to distinct azaarenes with remote chiral centres. The primary obstacle to achieving superior enantioselectivity for remote stereocontrol has been the inherent rigidity of the azaarene ring structure. Here we introduce an ene-reductase system capable of modulating the enantioselectivity of remote carbon-centred radicals on azaarenes through a mechanism of chiral hydrogen atom transfer. This photoenzymatic process effectively directs prochiral radical centres located more than six chemical bonds, or over 6 Å, from the nitrogen atom in azaarenes, thereby enabling the production of a broad array of azaarenes possessing a remote γ-stereocentre. Results from our integrated computational and experimental investigations underscore that the hydrogen bonding and steric effects of key amino acid residues are important for achieving such high stereoselectivities.


Subject(s)
Hydrogen , Oxidoreductases , Catalysis , Amino Acids , Hydrogen Bonding
16.
Int J Biol Macromol ; 254(Pt 2): 127836, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931859

ABSTRACT

Green nanotechnology is considered a promising method to construct functional materials with significant anticancer activity, while overcoming the shortcomings of traditional synthesis process complexity and high organic solvents consumption. Thus, in this study, we report for the first time the rational design and green synthesis of functionalized 5-fluorouracil and curcumin co-loaded lysozyme-hyaluronan composite colloidal nanoparticles (5-Fu/Cur@LHNPs) for better targeted colorectal cancer therapy with minimized side effects. The functionalized 5-Fu/Cur@LHNPs exhibit stabilized particle size (126.1 nm) with excellent homogeneity (PDI = 0.1), favorable colloidal stabilities, and excellent re-dispersibility. In vitro cell experiments illustrate that the cellular uptake of 5-Fu/Cur@LHNPs was significantly improved and further promoted a higher apoptosis ratio of HCT-116 cells. Compared with the control group, the 5-Fu/Cur@LHNPs formulation group achieved effective inhibition (60.1 %) of colorectal tumor growth. The alcohol-free self-assembly method to construct 5-Fu/Cur@LHNPs is simple and safe for a translational chemotherapy drug, also to promote more robust delivery systems for treating colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Curcumin , Nanoparticles , Humans , Fluorouracil , Drug Delivery Systems/methods , Hyaluronic Acid/therapeutic use , Drug Carriers/therapeutic use , Muramidase , Colorectal Neoplasms/drug therapy , Hydrogen-Ion Concentration , Particle Size , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
17.
ACS Omega ; 8(47): 45129-45136, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046350

ABSTRACT

Flotation separation of chalcopyrite from pyrite using lime or cyanides as depressants results in serious problems, such as the blockage of pipelines and environmental pollution. Eco-friendly organics are a future trend for beneficiation plants. In this research, the eco-friendly organic depressant sodium humate (SH) was chosen as a depressant to separate chalcopyrite from pyrite by flotation. The results indicated that SH could selectively depress pyrite owing to the oxidation species (FeOOH, Fe2(SO4)3) on its surface. The oxidation species were the adsorption sites for the COO- in the SH structure and impeded the subsequent collector potassium ethyl xanthate (KEX) adsorption. However, chalcopyrite was slightly oxidized with fewer oxidation species for SH adsorption, and KEX could be adsorbed and functioned effectively. This research suggested that SH could be an effective and eco-friendly depressant in chalcopyrite-pyrite flotation separation, which had potential use in the industry.

18.
Virology ; 587: 109880, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696054

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) can infect all ages of pigs, particularly newborn piglets with a mortality almost reaching to 80-100%, causing significant economic losses to the global pig industry. The mucosal immune response is crucial for PEDV prevention, in which specific dendritic cells (DCs) and differentiated T cells play vital roles. In this study, CD103+DCs were differentiated successfully with retinoic acid (RA) treatment in vitro. PEDV could not replicate efficiently in differentiated CD103+DCs but could promote maturation of CD103+DCs by up-regulating the expression of SLA-DR, CD1a, CD86, and cytokines of IL-1ß and IL-10. In addition, PEDV-infected CD103+DCs and CD4+T cells were co-cultured, and the results showed that the differentiation of CD4+T cells toward Th1, Tfh, and Treg, but not Th2. These results demonstrate that PEDV-infected CD103+DCs could promote the differentiation of CD4+T cells, which provided the basis for further study of mucosal response induced by PEDV via CD103+DCs.

19.
FASEB J ; 37(10): e23180, 2023 10.
Article in English | MEDLINE | ID: mdl-37738038

ABSTRACT

Transforming growth factor ß1 (TGF-ß1) performs a critical role in maintaining homeostasis of intestinal mucosa regulation and controls the survival, proliferation, and differentiation of many immune cells. In this study, we discovered that the infection of porcine epidemic diarrhea virus (PEDV), a coronavirus, upregulated TGF-ß1 expression via activating Tregs. Besides, recombinant porcine TGF-ß1 decreased the percentage of CD21+ B cells within the lymphocyte population in vitro. We further found that TGF-ß1 reduced the IgA-secreting B cell numbers and also inhibited plasma cell differentiation. Additional investigations revealed that TGF-ß1 induced the apoptosis of IgM+ B cells in both peyer's patches (PPs) and peripheral blood (PB) through the activation of the Bax/Bcl2-Caspase3 pathway. Conversely, the application of the TGF-ß1 signaling inhibitor SB431542 significantly antagonized the TGF-ß1-induced reduction of IgA secretion and B cell apoptosis and restored plasma cell differentiation. Collectively, TGF-ß1 plays an important role in regulating the survival and differentiation of porcine IgA-secreting B cells through the classical mitochondrial apoptosis pathway. These findings will facilitate future mucosal vaccine designs that target the regulation of TGF-ß1 for the control of enteric pathogens in the pig industry.


Subject(s)
Plasma Cells , Transforming Growth Factor beta1 , Swine , Animals , bcl-2-Associated X Protein , Cell Differentiation , Apoptosis , Immunoglobulin A , Immunoglobulin M
20.
Angew Chem Int Ed Engl ; 62(39): e202308122, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37559174

ABSTRACT

The enantioselective addition of potent nucleophiles to ketenes poses challenges due to competing background reactions and poor stereocontrol. Herein, we present a method for enantioselective phosphoric acid catalyzed amination of ketenes generated from α-aryl-α-diazoketones. Upon exposure to visible light, the diazoketones undergo Wolff rearrangement to generate ketenes. The phosphoric acid not only accelerates ketene capture by amines to form a single configuration of aminoenol intermediates but also promotes an enantioselective proton-transfer reaction of the intermediates to yield the products. Mechanistic studies elucidated the reaction pathway and explained how the catalyst expedited the transformation and controlled the enantioselectivity.

SELECTION OF CITATIONS
SEARCH DETAIL