Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Adv Colloid Interface Sci ; 328: 103177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759448

ABSTRACT

Pickering foam is a type of foam stabilized by solid particles known as Pickering stabilizers. These solid stabilizers adsorb at the liquid-gas interface, providing superior stability to the foam. Because of its high stability, controllability, versatility, and minimal environmental impact, nanomaterial-stabilized Pickering foam has opened up new possibilities and development prospects for foam applications. This review provides an overview of the current state of development of Pickering foam stabilized by a wide range of nanomaterials, including cellulose nanomaterials, chitin nanomaterials, silica nanoparticles, protein nanoparticles, clay mineral, carbon nanotubes, calcium carbonate nanoparticles, MXene, and graphene oxide nanosheets. Particularly, the preparation and surface modification methods of various nanoparticles, the fundamental properties of nanomaterial-stabilized Pickering foam, and the synergistic effects between nanoparticles and surfactants, functional polymers, and other additives are systematically introduced. In addition, the latest progress in the application of nanomaterial-stabilized Pickering foam in the oil industry, food industry, porous functional material, and foam flotation field is highlighted. Finally, the future prospects of nanomaterial-stabilized Pickering foam in different fields, along with directions for further research and development directions, are outlined.

2.
Poult Sci ; 103(6): 103691, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38598910

ABSTRACT

The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.

3.
Environ Res ; 248: 118263, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38281564

ABSTRACT

With the increase of sustainable development goal, the bio-based adsorption materials with high and selective dye removal are important for water treatment in the dyeing industry. In this paper, a bio-based adsorption foam composed of metal-organic frameworks (MOF) and polyethyleneimine (PEI)-modified cellulose was prepared by a three-step process, i.e., PEI modification of cellulose fibers (PC), MOF decoration of PEI-modified cellulose (MIL-53@PC), and in-situ foaming with polyurethane. PEI modification provides cellulose fiber with more active sites for both dye adsorption and MOF bonding. We found that MIL-53 crystals were tightly bonded on the surface of PC through hydrogen bonding. Because of the abundant adsorption sites (e.g., amines, iron oxide group), the MIL-53@PC demonstrated high adsorption capacity and selectivity for anionic dye (e.g., 936.5 mg/g for methyl orange) through electrostatic interaction and hydrogen bonding. Finally, MIL-53@PC particles were blended with a waterborne polyurethane prepolymer to prepare a three-dimensional hydrophilic foam (MIL-53@PC/PUF), which not only maintained high adsorption capacity and selectivity of MIL-53@PC and also improved its recyclability and reusability. The MIL-53@PC/PUF offers a promising solution for dye wastewater treatment.


Subject(s)
Cellulose/analogs & derivatives , Metal-Organic Frameworks , Polyethyleneimine/analogs & derivatives , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Polyethyleneimine/chemistry , Polyurethanes , Water Pollutants, Chemical/chemistry
4.
Angew Chem Int Ed Engl ; 63(9): e202318063, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38190839

ABSTRACT

The aqueous zinc-ion battery is promising as grid scale energy storage device, but hindered by the instable electrode/electrolyte interface. Herein, we report the lean-water ionic liquid electrolyte for aqueous zinc metal batteries. The lean-water ionic liquid electrolyte creates the hydrophobic tri-layer interface assembled by first two layers of hydrophobic OTF- and EMIM+ and third layer of loosely attached water, beyond the classical Gouy-Chapman-Stern theory based electrochemical double layer. By taking advantage of the hydrophobic tri-layer interface, the lean-water ionic liquid electrolyte enables a wide electrochemical working window (2.93 V) with relatively high zinc ion conductivity (17.3 mS/cm). Furthermore, the anion crowding interface facilitates the OTF- decomposition chemistry to create the mechanically graded solid electrolyte interface layer to simultaneously suppress the dendrite formation and maintain the mechanical stability. In this way, the lean-water based ionic liquid electrolyte realizes the ultralong cyclability of over 10000 cycles at 20 A/g and at practical condition of N/P ratio of 1.5, the cumulated areal capacity reach 1.8 Ah/cm2 , which outperforms the state-of-the-art zinc metal battery performance. Our work highlights the importance of the stable electrode/electrolyte interface stability, which would be practical for building high energy grid scale zinc-ion battery.

5.
Gels ; 9(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37754410

ABSTRACT

Drilling cuttings from the rock formation generated during the drilling process are generally smashed to fine particles through hydraulic cutting and grinding using a drilling tool, and then are mixed with the drilling fluid during circulation. However, some of these particles are too small and light to be effectively removed from the drilling fluid via solids-control equipment. These small and light solids are referred to as low gravity solids (LGSs). This work aimed to investigate the effect of LGSs on the performance of oil-based drilling fluid (OBDF), such as the rheological properties, high-temperature and high-pressure filtration loss, emulsion stability, and filter cake quality. The results show that when the content of LGSs reached or even exceeded the solid capacity limit of the OBDF, the rheological parameters including the plastic viscosity, gel strength, and thixotropy of OBDF increased significantly. Furthermore, the filtration of OBDF increases, the filter cake becomes thicker, the friction resistance becomes larger, and the stability of emulsion of OBDF also decreases significantly when the concentration of LGSs reached the solid capacity limit of OBDF (6-9 wt% commonly). It was also found that LGSs with a smaller particle size had a more pronounced negative impact on the drilling fluid performance. This work provides guidance for understanding the impact mechanism of LGSs on drilling fluid performance and regulating the performance of OBDF.

6.
Int J Biol Macromol ; 253(Pt 2): 126752, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678694

ABSTRACT

Herein, a novel magnetic adsorbent (BC/AA/MN@Fe3O4) was successfully prepared from waste bamboo fiber tissue and montmorillonite, and subsequently applied for the highly selective removal of malachite green (MG, removal efficiency = 97.3 %) from the mixed dye solution of MG with methyl orange (MO, removal efficiency = 4.5 %). The magnetic adsorbent has a high porosity with abundant mesopores. In the single dye MG solution, the adsorbent could effectively remove MG over a wide pH range from 4 to 10, and the maximum adsorption capacity (qmax) was 2282.3 mg/g. Moreover, the magnetic adsorbent could remove MG from various solutions including mixed dye solution, high salinity solution, and real river water dye solution. The thermodynamic results proved that the adsorption process of MG was spontaneous and endothermic. The adsorption of MG was due to the comprehensive effects of electrostatic attraction, hydrogen bonding interactions and ions exchange, between the adsorbent and MG. Furthermore, the BC/AA/MN@Fe3O4 exhibited an excellent reusability with adsorption efficiency above 53.4 % after five consecutive cycles. Therefore, the prepared magnetic nanocellulose-based adsorbent was expected to be a promising material for highly selective adsorption and separation of MG from mixed dye solution.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rosaniline Dyes , Thermodynamics , Adsorption , Magnetic Phenomena , Hydrogen-Ion Concentration , Kinetics
7.
Int J Biol Macromol ; 249: 126118, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37541474

ABSTRACT

Metal-organic frames (MOFs) have been recognized as one of the best candidates in the remediation of aqueous contaminants, while the fragile powder shape restricts the practical implementation. In this work, a shapeable, rebuildable, and multifunctional MOF composite (MIL-53@CF) was prepared from MIL-53 (Fe) and cellulose fiber (CF) using a simple ultrasonic method for adsorption and photocatalytic degradation of organic pollutants in wastewater. The results showed MIL-53(Fe) crystals were uniformly growth on CF surfaces and bonded with surface nanofibrils of CF through physical crosslinking and hydrogen bonding. Because of the high bonding strength, the MIL-53@CF composite exhibited an excellent compressive strength (3.53 MPa). More importantly, the MIL-53@CF composite was rebuildable through mechanical destruction followed by re-ultrasonication, suggesting the excellent reusability of MIL-53@CF for water remediation. The MIL-53@CF composite also had high adsorption capacities for methyl orange (884.6 mg·g-1), methylene blue (198.3 mg·g-1), and tetracycline (106.4 mg·g-1). MIL-53@CF composite could degrade TC through photocatalysis. The photocatalytic degradation mechanism was attributed to the Fe(II)/Fe(III) transform cycle reaction of MIL-53 crystal located on MIL-53@CF. Furthermore, the mechanical property and remoldability of MIL-53@CF composite increased its practicability. Comprehensively, MIL-53@CF composite provided a possible strategy to practically apply MOF in the remediation of aqueous contaminants.


Subject(s)
Metal-Organic Frameworks , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Ferric Compounds , Cellulose , Ultrasonics , Water Pollutants, Chemical/chemistry , Water
8.
Adv Sci (Weinh) ; 10(10): e2206320, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36748294

ABSTRACT

The 3D printing technique offers huge opportunities for customized thick-electrode designs with high loading densities to enhance the area capacity in a limited space. However, key challenges remain in formulating 3D printable inks with exceptional rheological performance and facilitating electronic/ion transport in thick bulk electrodes. Herein, a hybrid ink consisting of woody-derived cellulose nanofibers (CNFs), multiwalled carbon nanotubes (MWCNTs), and urea is formulated for the 3D printing nitrogen-doped thick electrodes, in which CNFs serve as both dispersing and thickening agents for MWCNTs, whereas urea acts as a doping agent. By systematically tailoring the concentration-dependent rheological performance and 3D printing process of the ink, a variety of gel architectures with high geometric accuracy and superior shape fidelity are successfully printed. The as-printed gel architecture is then transformed into a nitrogen-doped carbon block with a hierarchical porous structure and superior electrochemical performance after freeze-drying and annealing treatments. Furthermore, a quasi-solid-state symmetric supercapacitor assembled with two interdigitated carbon blocks obtained by a 3D printing technique combined with a nitrogen-doping strategy delivers an energy density of 0.10 mWh cm-2 at 0.56 mW cm-2 . This work provides guidance for the formulation of the printable ink used for 3D printing of high-performance thick carbon electrodes.

9.
Sci Total Environ ; 868: 161618, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36649776

ABSTRACT

Microplastics (MPs) are a type of contaminants produced during the use and disposal of plastic products, which are ubiquitous in our lives. With the high specific surface area and strong hydrophobicity, MPs can adsorb various hazardous microorganisms and chemical contaminants from the environment, causing irreversible damage to our humans. It is reported that the MPs have been detected in infant feces and human blood. Therefore, the presence of MPs has posed a significant threat to human health. It is critically essential to develop efficient, scalable and environmentally-friendly methods to remove MPs. Herein, recent advances in the MPs remediation technologies in water and wastewater treatment processes are overviewed. Several approaches, including membrane filtration, adsorption, chemically induced coagulation-flocculation-sedimentation, bioremediation, and advanced oxidation processes are systematically documented. The characteristics, mechanisms, advantages, and disadvantages of these methods are well discussed and highlighted. Finally, the current challenges and future trends of these methods are proposed, with the aim of facilitating the remediation of MPs in water and wastewater treatment processes in a more efficient, scalable, and environmentally-friendly way.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Microplastics , Plastics , Water , Wastewater , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Water Purification/methods
10.
Adv Sci (Weinh) ; 9(25): e2202380, 2022 09.
Article in English | MEDLINE | ID: mdl-35798275

ABSTRACT

Uncontrollable zinc dendrite growth and parasitic reactions have greatly hindered the development of high energy and long life rechargeable aqueous zinc-ion batteries. Herein, the synergic effect of a bifunctional lignin-containing cellulose nanofiber (LCNF)-MXene (LM) layer to stabilize the interface of zinc anode is reported. On one hand, the LCNF provides enough strength (43.7 MPa) at relative low porosity (52.2%) to enable the diffusion limited dendrite suppression, while, on the other hand, the MXene serves as a zinc gating layer, facilitating the zinc ion mobility, restricting the active water/anions from degradation in the electrode/electrolyte interface, and epitaxially guiding zinc deposition along (002) plane. Benefiting from the synergic effect of diffusion limited dendrite suppression and zinc gate, the LM layer enabled a high coulombic efficiency (CE) of 98.9% with a low overpotential of 43.1 mV at 1 mA cm-2 in Zn//Cu asymmetric cells. More importantly, Zn//MnO2 full cells with the LM layer achieve a high-capacity retention of 90.0% for over 1000 cycles at 1 A g-1 , much higher than the full cell without the protective layer (73.9% over 500 cycles). The work provides a new insight in designing a dendrite-free zinc anode for long-cycle-life batteries.


Subject(s)
Lignin , Nanofibers , Cellulose , Manganese Compounds , Oxides , Zinc
11.
Food Chem Toxicol ; 168: 113291, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35870732

ABSTRACT

Although polymeric membrane has superior properties, its applications in biomedical and food industrial fields are minimal. Biofouling is a significant concern in the membrane, created from particular interactions between the membrane and untreated water content. This research showed that a careful superhydrophilic modification of polyethersulfone membrane could address those drawbacks that have hindered their utility. Hence, a combination of chemical and physical modification showed far-reaching effects on surface behavior, affecting manifold aspects of its bacterial attachment, protein adsorption resistance, and hydrophilicity. The contact angle measurement results decreased from 30° to 0° in 26 s, and surface free energy increased by 33%, demonstrating the shifting surface wettability behavior toward the Superhydrophilicity. Besides, increasing the average surface roughness on the nanoscale and forming 70-110 nm jagged structures results in a marked reduction in protein adsorption, bacterial adhesion, and biofouling formation, confirmed by the results of Flow cytometry analysis and microtiter plate assay. An improved understanding of antifouling and antibacterial properties will greatly assist in food industries since it can be applied to enhance the durability of food and chemical materials. This is important as it gives us a simple way of improving packing reliability, reducing costs and amounts of undesirable waste products.


Subject(s)
Biofouling , Nanocomposites , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofouling/prevention & control , Flow Cytometry , Reproducibility of Results , Surface Properties , Titanium , Waste Products , Water/chemistry
12.
Carbohydr Polym ; 291: 119573, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698338

ABSTRACT

Lignin-containing cellulose nanofibers (LCNFs), prepared from energy cane bagasse (ECB) using microwave-assisted natural deep eutectic solvent (MW-NADES) pretreatment combined with microfluidization, are utilized as stabilizing agents for magnetic particles (MNPs) in magnetorheological fluids (MRFs). The as-prepared LCNFs helped suspend negatively charged MNPs in MRFs effectively due to the presence of physically entangled network of LCNFs and the electrostatic repulsion between LCNFs and MNPs. Consequently, the presence of LCNFs increased the viscosity, yield stress and dynamic moduli of MRFs within the entire magnetic field range (0-1 T). Moreover, the as-developed LCNF-MRFs exhibited superior magnetorheological properties, i.e., widely controllable viscosity, yield stress and dynamic moduli, rapid magnetic response, good reversibility and outstanding cycling stability. This work demonstrates the sustainable, ultrafast production of LCNFs from cellulosic biomass using MW-NADES for MRF stabilization, paving the way for the development of high-performance, and eco-friendly MRFs.


Subject(s)
Lignin , Nanofibers , Cellulose , Microwaves , Solvents
13.
Adv Mater ; 33(21): e2006052, 2021 May.
Article in English | MEDLINE | ID: mdl-33870553

ABSTRACT

Cellulose nanomaterials (CNMs), mainly including nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNCs), have attained enormous interest due to their sustainability, biodegradability, biocompatibility, nanoscale dimensions, large surface area, facile modification of surface chemistry, as well as unique optical, mechanical, and rheological performance. One of the most fascinating properties of CNMs is their aqueous suspension rheology, i.e., CNMs helping create viscous suspensions with the formation of percolation networks and chemical interactions (e.g., van der Waals forces, hydrogen bonding, electrostatic attraction/repulsion, and hydrophobic attraction). Under continuous shearing, CNMs in an aqueous suspension can align along the flow direction, producing shear-thinning behavior. At rest, CNM suspensions regain some of their initial structure immediately, allowing rapid recovery of rheological properties. These unique flow features enable CNMs to serve as rheological modifiers in a wide range of fluid-based applications. Herein, the dependence of the rheology of CNM suspensions on test protocols, CNM inherent properties, suspension environments, and postprocessing is systematically described. A critical overview of the recent progress on fluid applications of CNMs as rheology modifiers in some emerging industrial sectors is presented as well. Future perspectives in the field are outlined to guide further research and development in using CNMs as the next generation rheological modifiers.

14.
Adv Mater ; 33(28): e2002264, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32902018

ABSTRACT

How do trees support their upright massive bodies? The support comes from the incredibly strong and stiff, and highly crystalline nanoscale fibrils of extended cellulose chains, called cellulose nanofibers. Cellulose nanofibers and their crystalline parts-cellulose nanocrystals, collectively nanocelluloses, are therefore the recent hot materials to incorporate in man-made sustainable, environmentally sound, and mechanically strong materials. Nanocelluloses are generally obtained through a top-down process, during or after which the original surface chemistry and interface interactions can be dramatically changed. Therefore, surface and interface engineering are extremely important when nanocellulosic materials with a bottom-up process are fabricated. Herein, the main focus is on promising chemical modification and nonmodification approaches, aiming to prospect this hot topic from novel aspects, including nanocellulose-, chemistry-, and process-oriented surface and interface engineering for advanced nanocellulosic materials. The reinforcement of nanocelluloses in some functional materials, such as structural materials, films, filaments, aerogels, and foams, is discussed, relating to tailored surface and/or interface engineering. Although some of the nanocellulosic products have already reached the industrial arena, it is hoped that more and more nanocellulose-based products will become available in everyday life in the next few years.


Subject(s)
Cellulose , Engineering , Nanofibers
15.
Carbohydr Polym ; 246: 116548, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32747235

ABSTRACT

Lignin-containing cellulose nanofibers (LCNFs) from energy cane bagasse (ECB), were prepared using microwave assisted deep eutectic solvent (MV-DES) treatment in combination with ultrasonication. The yield of lignocellulose is up to 45.2 % with 81.0 % delignification under the optimal reaction condition (110 ℃, 30 min). The resulting LCNF exhibited a highly entangled network, which was caused by the binder role of lignin between cellulose nanofibers. The addition of LCNFs improved the stability of the polyanionic cellulose (PAC) film-forming suspension, which was confirmed by the increased zeta potential and viscosity values. The LCNF / PAC films showed tunable mechanical and UV-resistant properties, depending on the amount and type of LCNFs. PAC films with the addition of 5 % LCNFs (PEF-5 %) showed good mechanical properties (a tensile strength of 55.8 MPa with a 26.3 % strain to break) and high UV protection ability (a UV-transmittance of 2.9 %).


Subject(s)
Lignin/chemical synthesis , Nanofibers/chemistry , Solvents/chemistry , Ultraviolet Rays , Cellulose/chemistry , Microwaves , Physical Phenomena , Polyelectrolytes/chemistry , Tensile Strength , Ultrasonic Waves , Viscosity
16.
Biomed Phys Eng Express ; 6(4): 045009, 2020 05 14.
Article in English | MEDLINE | ID: mdl-33444270

ABSTRACT

Cell-laden printing is the most commonly used approach in 3D bioprinting. One of the major drawbacks of cell-laden printing is that cell viability is highly affected by the extrusion pressure and shear force in the printing process. We present a new cell-deposition method by using the superabsorbent capability of 3D printed scaffolds with four ink formations: 20:10 nanocrystal/alginate (NCA 20/10), 20:10 nanofiber/alginate (NFA 20/10), 20:02 nanocrystal/alginate (NCA 20/02) and 20:02 nanofiber/alginate (NFA 20/02). Limited pores were observed from the surface of inherent NCA and NFA scaffolds, which may limit the numbers of cells to enter into the scaffolds. Therefore, we designed a dual-porous (DP) structure to connect the inherent pores (IPs) to the scaffold surface. Due to these porous structures, NCA and NFA scaffolds exhibit an excellent capability to absorb cell suspension, which may be used for depositing cells to 3D-printed scaffolds, namely self-absorbent (SA) deposition. Compared to the conventional top-loading (TL) method, the SA method had more uniform cell distributions in the entire 3D-printed scaffolds and higher efficiency of cell deposition. For the TL method, DP scaffold exhibited a more uniform cell distribution, which may provide a better microenvironment for the cells in comparison to the IP scaffold. For both cell loading methods, a rapid increase of cell number was observed in the first 4 days of culture in the 3D-printed NCA and NFA structures. NFA 20/02 exhibits the best cell viability compared to the other three inks. In conclusion, the SA method may serve as a new approach for loading cells in cell-free 3D-bioprinting, and DP design could improve the efficiency of the cell deposition.


Subject(s)
Alginates/chemistry , Bioprinting , Cellulose/chemistry , Freeze Drying , Hydrogels/chemistry , Printing, Three-Dimensional , Cell Proliferation , Cell Survival , Humans , Materials Testing , Microscopy, Electron, Scanning , Osteoblasts/metabolism , Porosity , Rheology , Tissue Scaffolds , Viscosity
17.
ACS Appl Bio Mater ; 3(5): 3015-3027, 2020 May 18.
Article in English | MEDLINE | ID: mdl-35025348

ABSTRACT

Cellulose nanocrystals (CNCs), with their rodlike shape and nanoscale dimensions, greatly improve the filtration performance of bentonite-containing, water-based drilling fluids (BT-WDFs) through interactions with the BT platelets. When these WDFs are exposed to high salt concentrations, though, their fluid retention properties are greatly diminished due to reduced CNC-BT interaction and BT aggregation/flocculation. Consequently, we reduce BT-BT interaction at high salt by grafting polyelectrolytes (PE) to CNC particles (CNC-PE) to enhance CNC-BT interactions when incorporating these hybrid particles with BT-WDFs. The particles sterically and electrostatically screen BT platelets from associating, thus improving fluid filtration performance at high salt. Three types of CNC modifications were carried out: grafting from direct surface initiation, modification with vinyl-terminated glycidyl methacrylate (GMA) before grafting, and physical mixing of CNC with a polymer. These modifications were performed using three polyelectrolyte materials: anionic polystyrene sulfonate (PSS), cationic polyacrylamide (PAM), and a random copolymer of PSS and PAM (PSS-co-PAM). Formulations containing CNC-PEs prepared by covalent grafting exhibited superior filtration properties compared to those in which CNCs and PEs were physically mixed. The higher graft loading achieved with the GMA method resulted in poorer filtration results compared to the direct grafting method due to CNC-PE interparticle cross-linking. PSS-modified CNC-PEs appeared to attach to BT edges, while PAM-modified CNC-PEs attached to the BT faces. These interactions disrupted BT aggregation, with the PSS-co-PAM CNC hybrid displaying the most desired filtration properties. The results highlight the importance of steric and charge stabilization of the BT particle edges and faces to achieve high-performance WDFs for well excavation.

18.
ACS Appl Mater Interfaces ; 11(31): 27944-27953, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31306577

ABSTRACT

Halloysite nanotubes (HNTs), naturally occurring and environmental benign clay nanoparticles, have been successfully functionalized with amphiphilic polypeptoid polymers by surface-initiated polymerization methods and investigated as emulsion stabilizers toward oil spill remediation. The hydrophilicity and lipophilicity balance (HLB) of the grafted polypeptoids was shown to affect the wettability of functionalized HNTs and their performance as stabilizers for oil-in-water emulsions. The functionalized HNTs having relatively high hydrophobic content (HLB = 12.0-15.0) afforded the most stable oil-in-water emulsions containing the smallest oil droplet sizes. This has been attributed to the augmented interfacial activities of polypeptoid-functionalized HNTs, resulting in more effective reduction of interfacial tension, enhancement of thermodynamic propensity of the HNT particles to partition at the oil-water interface, and increased emulsion viscosity relative to the pristine HNTs. Cell culture studies have revealed that polypeptoid-functionalized HNTs are noncytotoxic toward Alcanivorax borkumensis, a dominant alkane degrading bacterium found in the ocean after oil spill. Notably, the functionalized HNTs with higher hydrophobic polypeptoid content (HLB = 12.0-14.3) were shown to induce more cell proliferation than either pristine HNTs or those functionalized with less hydrophobic polypeptoids. It was postulated that the functionalized HNTs with higher hydrophobic polypeptoid content may promote the bacterial proliferation by providing larger oil-water interfacial area and better anchoring of bacteria at the interface.

19.
Int J Biol Macromol ; 130: 685-694, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30826401

ABSTRACT

The interest in the modification of cellulose nanocrystals (CNCs) lies in the potential to homogenously disperse CNCs in hydrophobic polymer matrices and to promote interfacial adhesion. In this work, poly(methyl methacrylate) (PMMA) and poly(butyl acrylate) (PBA) were grafted onto CNCs, thereby imparting their hydrophobic traits. The successful grafting modification led to the increased thermal stability of modified CNCs (MCNCs), and the hydrophobic surface modification was integrated with crystalline structure and morphology of CNCs. The nanocomposites with 7 wt% MCNCs/PBA-co-PMMA had an increase in Young's modulus of >25-fold and in tensile strength at about 3 times compared to these of neat PBA-co-PMMA copolymer. In addition, a micro-phase separated morphology (PBA soft domains, and PMMA and CNC hard domains) of MCNCs/PBA-co-PMMA nanocomposites was observed. The large increase in the storage moduli (glass transition temperatures) and organized morphology of MCNCs/PBA-co-PMMA nanocomposites also elucidated the relationship between mechanical properties and micro-phase separated morphology. Therefore, the MCNCs are effective reinforcing agents for the PBA-co-PMMA thermoplastic elastomers, opening up opportunities for their wide-spread applications in polymer composites.


Subject(s)
Cellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Mechanical Phenomena , Molecular Structure , Nanocomposites/ultrastructure , Thermodynamics
20.
RSC Adv ; 9(34): 19441-19449, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-35519395

ABSTRACT

A rapid, simple and cost-effective approach to prepare hierarchical porous carbons (PCs) for supercapacitors is reported by microwave activation of abundant and low-cost waste palm, biochar (BC) and KOH. BCs from waste palm at different carbonization temperatures (300-700 °C), as catalysts and microwave receptors, were used here for the first time to facilitate the conversion of waste palm into hierarchical PCs. As a result, the high-graphitization PC obtained at a BC carbonization temperature of 300 °C (PC-300) possessed a high surface area (1755 m2 g-1), a high pore volume (0.942 cm3 g-1) and a moderate mesoporosity (37.79%). Besides their high-graphitization and hierarchical porous structure, the oxygen doping in PC-300 can also promote the rapid transport of electrolyte ions. The symmetric supercapacitor based on the PC-300 even in PVA/LiCl gel electrolyte exhibited a high specific capacitance of 164.8 F g-1 at a current density of 0.5 A g-1 and retained a specific capacitance of 121.3 F g-1 at 10 A g-1, demonstrating a superior rate capacity of 73.6%. Additionally, the PC-300 supercapacitor delivered a high energy density of 14.6 W h kg-1 at a power density of 398.9 W kg-1 and maintained an energy density of 10.8 W h kg-1 at a high power density of 8016.5 W kg-1, as well as an excellent cycling stability after 2000 cycles with a capacitance retention of 92.06%.

SELECTION OF CITATIONS
SEARCH DETAIL
...