Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
J Immunother Cancer ; 12(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39231544

ABSTRACT

BACKGROUND: The main challenge against patients with cancer to derive benefits from immune checkpoint inhibitors targeting PD-1/PD-L1 appears to be the immunosuppressive tumor microenvironment (TME), in which IL-33/ST2 signal fulfills critical functions. However, whether IL-33 limits the therapeutic efficacy of anti-PD-L1 remains uncertain. METHODS: Molecular mechanisms of IL-33/ST2 signal on anti-PD-L1 treatment lewis lung carcinoma tumor model were assessed by RNA-seq, ELISA, WB and immunofluorescence (IF). A sST2-Fc fusion protein was constructed for targeting IL-33 and combined with anti-PD-L1 antibody for immunotherapy in colon and lung tumor models. On this basis, bifunctional fusion proteins were generated for PD-L1-targeted blocking of IL-33 in tumors. The underlying mechanisms of dual targeting of IL-33 and PD-L1 revealed by RNA-seq, scRNA-seq, FACS, IF and WB. RESULTS: After anti-PD-L1 administration, tumor-infiltrating ST2+ regulatory T cells (Tregs) were elevated. Blocking IL-33/ST2 signal with sST2-Fc fusion protein potentiated antitumor efficacy of PD-L1 antibody by enhancing T cell responses in tumor models. Bifunctional fusion protein anti-PD-L1-sST2 exhibited enhanced antitumor efficacy compared with combination therapy, not only inhibited tumor progression and extended the survival, but also provided long-term protective antitumor immunity. Mechanistically, the superior antitumor activity of targeting IL-33 and PD-L1 originated from reducing immunosuppressive factors, such as Tregs and exhausted CD8+ T cells while increasing tumor-infiltrating cytotoxic T lymphocyte cells. CONCLUSIONS: In this study, we demonstrated that IL-33/ST2 was involved in the immunosuppression mechanism of PD-L1 antibody therapy, and blockade by sST2-Fc or anti-PD-L1-sST2 could remodel the inflammatory TME and induce potent antitumor effect, highlighting the potential therapeutic strategies for the tumor treatment by simultaneously targeting IL-33 and PD-L1.


Subject(s)
Immunotherapy , Interleukin-33 , Tumor Microenvironment , Animals , Mice , Immunotherapy/methods , Humans , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice, Inbred C57BL , Interleukin-1 Receptor-Like 1 Protein/metabolism , Cell Line, Tumor
2.
Sci Rep ; 14(1): 21213, 2024 09 11.
Article in English | MEDLINE | ID: mdl-39261661

ABSTRACT

Although graphene oxide (GO) has extensive recognized application prospects in slow-release fertilizer, plant pest control, and plant growth regulation, the incorporation of GO into nano herbicides is still in its early stages of development. This study selected a pair of sweet corn sister lines, nicosulfuron (NIF)-resistant HK301 and NIF-sensitive HK320, and sprayed them both with 80 mg kg-1 of GO-NIF, with clean water as a control, to study the effect of GO-NIF on sweet corn seedling growth, photosynthesis, chlorophyll fluorescence, and antioxidant system enzyme activity. Compared to spraying water and GO alone, spraying GO-NIF was able to effectively reduce the toxic effect of NIF on sweet corn seedlings. Compared with NIF treatment, 10 days after of spraying GO-NIF, the net photosynthetic rate (A), stomatal conductance (Gs), transpiration rate (E), photosystem II photochemical maximum quantum yield (Fv/Fm), photochemical quenching coefficient (qP), and photosynthetic electron transfer rate (ETR) of GO-NIF treatment were significantly increased by 328.31%, 132.44%, 574.39%, 73.53%, 152.41%, and 140.72%, respectively, compared to HK320. Compared to the imbalance of redox reactions continuously induced by NIF in HK320, GO-NIF effectively alleviated the observed oxidative pressure. Furthermore, compared to NIF treatment alone, GO-NIF treatment effectively increased the activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in both lines, indicating GO induced resistance to the damage caused by NIF to sweet corn seedlings. This study will provides an empirical basis for understanding the detoxification promoting effect of GO in NIF and analyzing the mechanism of GO induced allogeneic detoxification in cells.


Subject(s)
Antioxidants , Chlorophyll , Graphite , Herbicides , Photosynthesis , Sulfonylurea Compounds , Zea mays , Photosynthesis/drug effects , Chlorophyll/metabolism , Zea mays/drug effects , Zea mays/metabolism , Zea mays/growth & development , Sulfonylurea Compounds/pharmacology , Sulfonylurea Compounds/toxicity , Antioxidants/metabolism , Graphite/toxicity , Herbicides/toxicity , Herbicides/pharmacology , Pyridines/pharmacology , Fluorescence , Superoxide Dismutase/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism
3.
Sci Total Environ ; 953: 175912, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39222809

ABSTRACT

Soil moisture is a key factor for vegetation restoration in arid and semi-arid regions. Clarifying the vertical characteristics of soil moisture in artificial forests on a regional scale and its response mechanisms can benefit for land use management in water-deficient areas such as the Loess Plateau. The study targets Robinia pseudoacacia on the Loess Plateau with a meta-analysis based on 790 soil moisture data points abstracted from 35 published papers. The results show that extensive cultivation of R pseudoacacia on the Loess Plateau leads to a significant reduction in soil moisture (P < 0.05). Soil moisture decreases significantly with growth of trees, especially between 400 and 500 cm soil layers. Soil moisture increases with the hydrothermal gradient. The results indicate that intensive afforestation activities in high temperature and rainy areas still significantly consume deep soil moisture. The main reason is that the impact of hydrothermal factors on soil moisture is significant between 0 and 200 cm soil layers and decreases with increasing soil depth. However, the continuous depletion of deep soil moisture leads to insignificant differences in soil moisture responses under different topographical conditions in the region. Therefore, neglecting the impact of forest age and hydrothermal factors on soil moisture in afforestation activities, the excessive water consumption by R pseudoacacia during growth poses potential risks to the ecological environment of the Loess Plateau. This study provides references for knowledge on water relating problems and sustainable management of artificial forests in arid and semi-arid areas.

4.
Cell Rep Med ; 5(9): 101716, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39241773

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer that presents significant challenges for early detection. This study introduces the GlyExo-Capture method for isolating fucosylated extracellular vesicles (Fu-EVs) from serum. We analyze microRNA (miRNA) profiles from Fu-EVs in 88 HCC patients and 179 non-HCC controls using next-generation sequencing (NGS) and identify five miRNAs (hsa-let-7a, hsa-miR-21, hsa-miR-125a, hsa-miR-200a, and hsa-miR-150) as biomarkers for HCC diagnosis. The five-miRNA panel demonstrates exceptional HCC diagnostic performance, with a sensitivity of 0.90 and specificity of 0.92 in a combined cohort of 194 HCC and 412 non-HCC controls, significantly surpassing the performance of alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP). Notably, the miRNA model achieves recall rates of 85.7% and 90.8% for stage 0 and stage A early-stage HCC, respectively, identifies 88.1% of AFP-negative HCC cases, and effectively differentiates HCC from other cancers. This study provides a high-throughput, rapid, and non-invasive approach for early HCC detection.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/blood , Liver Neoplasms/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , MicroRNAs/genetics , MicroRNAs/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Female , Male , Middle Aged , Fucose/metabolism , Aged , High-Throughput Nucleotide Sequencing/methods , alpha-Fetoproteins/metabolism , alpha-Fetoproteins/genetics
5.
Sci Total Environ ; 954: 176352, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299322

ABSTRACT

Hypertension is prevalent in e-waste recycling areas, and elevated blood pressure in children significantly increases the risk of hypertension in adulthood. However, the associations and toxic pathways between chronic exposure to metal(loids) and elevated blood pressure are rarely investigated. In this study, we measured the levels of 29 hair metal(loids) (chronic exposure biomarkers) and blood pressure in 667 susceptible children from an e-waste recycling area to explore their relationships. Paired urine metabolomics analysis was also performed to interpret potential mechanistic pathways. Results showed that the hypertension prevalence in our recruited children (13.0 %) exceeded the average rate (9.5 %) for Chinese children aged 6-17 years. The top five abundant metal(loids), including lead, strontium, barium, and zinc, demonstrated the most profound associations with elevated systolic blood pressure. Quantile g-computation, weighted quantile sum, and Bayesian kernel machine regression analysis jointly demonstrated a significant association between chronic exposure to metal(loids) mixture and systolic blood pressure. Interestingly, selenium showed significant antagonistic interactions with these four metals, suggesting that supplementing selenium may help children resist the elevated blood pressure induced by metal(loids) exposure. Increased metal(loids) and blood pressure levels were significantly linked to changes in urine metabolomics. Structural equation model indicated that androsterone glucuronide and N-Acetyl-1-aspartylglutamic acid were the significant mediators of the associations between metal(loids) and blood pressure, with mediation effects of 77.4 % and 29.0 %, respectively, suggesting that androsterone glucuronide and N-Acetyl-1-aspartylglutamic acid may be involved in the development of metal-induced blood pressure elevating effect. Girls were more vulnerable to metal(loids)-induced hormonal imbalance, especially androsterone glucuronide, than boys. Chronic exposure to metal(loids) at e-waste recycling sites may contribute to elevated blood pressure in children through disrupting various metabolism pathways, particularly hormonal balance. Our study provides new insights into potential mechanistic pathways of metal(loids)-induced changes in children's blood pressure.

6.
Materials (Basel) ; 17(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39336414

ABSTRACT

Accessible and superior electrocatalysts to overcome the sluggish oxygen evolution reaction (OER) are pivotal for sustainable and low-cost hydrogen production through electrocatalytic water splitting. The iron and nickel oxohydroxide complexes are regarded as the most promising OER electrocatalyst attributed to their inexpensive costs, easy preparation, and robust stability. In particular, the Fe-doped NiOOH is widely deemed to be superior constituents for OER in an alkaline environment. However, the facile construction of robust Fe-doped NiOOH electrocatalysts is still a great challenge. Herein, we report the facile construction of Fe-doped NiOOH on Ni(OH)2 hierarchical nanosheet arrays grown on nickel foam (FeNi@NiA) as efficient OER electrocatalysts through a facile in-situ electrochemical activation of FeNi-based Prussian blue analogues (PBA) derived from Ni(OH)2. The resultant FeNi@NiA heterostructure shows high intrinsic activity for OER due to the modulation of the overall electronic energy state and the electrical conductivity. Importantly, the electrochemical measurement revealed that FeNi@NiA exhibits a low overpotential of 240 mV at 10 mA/cm2 with a small Tafel slope of 62 mV dec-1 in 1.0 M KOH, outperforming the commercial RuO2 electrocatalysts for OER.

7.
Nanomicro Lett ; 17(1): 24, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331290

ABSTRACT

Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MxSy/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.

8.
Polymers (Basel) ; 16(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39204548

ABSTRACT

A functionalized ethylene-vinyl-alcohol (EVOH) nanofibrous membrane (NFM) was fabricated via co-electrospinning H4SiW12O40 (SiW12) and EVOH first, and then grafting citric acid (CCA) on the electrospun SiW12@EVOH NFM. Characterization with FT-IR, EDX, and XPS confirmed that CCA was introduced to the surface of SiW12@EVOH NFM and the Keggin structure of SiW12 was maintained well in the composite fibers. Due to a number of carboxyl groups introduced by CCA, the as-prepared SiW12@EVOH-CCA NFM can form a high number of hydrogen bonds with CR, and thus can be used to selectively absorb congo red (CR) in aqueous solutions. More importantly, the CR enriched in the NFM can be rapidly degraded via photocatalysis. SiW12 in the NFM acted as a photocatalyst, and the hydroxyl groups in the NFM acted as an electron donor to accelerate the photodegradation rate of CR. Meanwhile, the SiW12@EVOH-CCA NFM was regenerated and then exhibited a relatively stable adsorption capacity in five cycles of filtration-regeneration. The bifunctional nanofibrous membrane filter showed potential for use in the thorough purification of dye wastewater.

9.
Article in English | MEDLINE | ID: mdl-39118568

ABSTRACT

Aberrant gene expression in cardiomyocyte has been revealed to be the fundamental essence of pathological cardiac hypertrophy. However, the detailed mechanisms are not fully understood. The underlying regulators of gene expression involved in cardiac hypertrophy remain to be further identified. Here, we report that the RNA-binding protein RNA-binding motif protein 4 (RBM4) functions as an endogenic protector that is able to fight against cardiomyocyte hypertrophy in vitro. Under pro-hypertrophic stimulation of angiotensin II (Ang II), the protein level of RBM4 in cardiomyocyte and myocardium is elevated. Knockdown of RBM4 can further aggravate cardiomyocyte hypertrophy, while over-expression of RBM4 represses cardiomyocyte hypertrophy. Mechanistically, RBM4 is localized in the nucleus and down-regulates the expression of polypyrimidine tract-binding protein 1 (PTBP1), which has been shown to aggravate cardiomyocyte hypertrophy. In addition, we suggest that the up-regulation of RBM4 in cardiomyocyte hypertrophy is caused by N6-methyladenosine (m6A). Ang II induces m6A methylation of RBM4 mRNA, which further enhances the YTH domain-containing family protein 1 (YTHDF1)-mediated translation of RBM4. Thus, our results reveal a novel pathway consisting of m6A, RBM4 and PTBP1, which is involved in cardiomyocyte hypertrophy.

10.
J Appl Clin Med Phys ; : e14471, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102876

ABSTRACT

PURPOSE: To investigate the dose rate dependence of MapCHECK3 and its influence on measurement accuracy, as well as the effect of dose rate correction. MATERIALS AND METHODS: The average and instantaneous dose rate dependence of MapCHECK2 and MapCHECK3 were studied. The accuracy of measurements was investigated where the dose rate differed significantly between dose calibration of the MapCHECK and the measurement. Measurements investigated include: the central axis dose for different fields at different depths, off-axis doses outside the field, and off-axis doses along the wedge direction. Measurements using an ion chamber were taken as the reference. Exponential functions were fit to account for average and instantaneous dose rate dependence for MapCHECK3 and used for dose rate correction. The effect of the dose rate correction was studied by comparing the differences between the measurements for MapCHECK (with and without the correction) and the reference. RESULTS: The maximum dose rate dependence of MapCHECK3 is greater than 2.5%. If the dose calibration factor derived from a 10 × 10 cm2 open field at 10 cm depth was used for measurements, the average differences in central diode dose were 0.8% ± 1.0% and 1.0% ± 0.8% for the studied field sizes and measurement depths, respectively. The introduction of wedge would not only induce -1.8% ± 1.3% difference in central diode dose, but also overestimate the effective wedge angle. After the instantaneous dose rate correction, above differences can be changed to 1.9% ± 8.1%, 0.2% ± 0.1%, and 0.0% ± 0.9%. The pass rate can be improved from 98.4% to 98.8%, 98.3%-100.0%, and 96.3%-100.0%, respectively. CONCLUSION: Compared with MapCHECK2 (SunPoint1 diodes), the more pronounced dose rate dependence of MapCHECK3 (SunPoint2 diodes) should be carefully considered. To ensure highly accurate measurement, it is suggested to perform the dose calibration at the same condition where measurement will be performed. Otherwise, the dose rate correction should be applied.

11.
ACS Nano ; 18(33): 22356-22368, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39109407

ABSTRACT

Rechargeable magnesium metal batteries (RMBs) have shown promising prospects in sustainable energy storage due to the high crustal abundance, safety, and potentially large specific capacity of magnesium. However, their development is constrained by the lack of effective cathode materials that can achieve high capacity and stable magnesium storage at a practically reasonable rate. Herein, we construct a three-dimensional (3D) iron(III)-dihydroxy-benzoquinone (Fe2(DHBQ)3) metal-organic framework (MOF) material with dual redox centers of Fe3+ cations and DHBQ2- anions for reversible storage of Mg2+ in RMBs. Spectroscopic analysis and density functional theory (DFT) calculations reveal the redox chemistry of both Fe3+ ions and carbonyls from DHBQ ligands during electrochemical processes. Benefiting from the rational structure, the Fe2(DHBQ)3∥Mg cells exhibit a high reversible capacity of 395.3 mAh/g, large energy density of 463.5 Wh/kg, and high power density of 2456.0 W/kg. Moreover, the high electronic conductivity (8.35 × 10-5 S/cm) and favorable diffusion path of Mg2+ in Fe2(DHBQ)3 endow the cells with exceptional cycling stability and rate capability with a long life of 5000 cycles at 2000 mA/g. The dual redox-active MOF demonstrates a category of advanced cathode materials for high-performance RMBs.

12.
Adv Sci (Weinh) ; : e2403009, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39159063

ABSTRACT

Periprosthetic infection and prosthetic loosing stand out as prevalent yet formidable complications following orthopedic implant surgeries. Synchronously addressing the two complications is long-time challenging. Herein, a bioactive glass scaffold (BGS) functionalized with MgCuFe-layered double hydroxide (LDH)-derived sulfide nanosheets (BGS/MCFS) is developed for vascularized osteogenesis and periprosthetic infection prevention/treatment. Apart from the antibacterial cations inhibiting bacterial energy and material metabolism, the exceptional near-infrared-II (NIR-II) photothermal performance empowers BGS/MCFS to eliminate periprosthetic infections, outperforming previously reported functionalized BGS. The rough surface topography and the presence of multi-bioactive metal ions bestow BGS/MCFS with exceptional osteogenic and angiogenic properties, with 8.5-fold and 2.3-fold enhancement in bone mass and neovascularization compared with BGS. Transcriptome sequencing highlights the involvement of the TGF-ß signaling pathway in these processes, while single-cell sequencing reveals a significant increase in osteoblasts and endothelial cells around BGS/MCFS compared to BGS.

13.
Chemistry ; : e202402806, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180461

ABSTRACT

Tunable luminescence-assisted information storage and encryption holds increasing significance in today's society. A promising approach to incorporating the benefits of both organic long persistent luminescent (LPL) materials and rare-earth (RE) luminescence lies in utilizing organic host materials to sensitize RE luminescence, as well as hydrogen-bonded organic framework (HOF) phosphorescence Förster resonance energy transfer to RE compound luminescence. This work introduces a one-pot, in situ pyrolytic condensation method, achieved through high-temperature melting calcination, to synthesize lanthanide ion-doped HOF materials. This method circumvents the drawback of molecular triplet energy annihilation, enabling the creation of organic LPL materials with RE characteristics. The HOF material serves as the host, exhibiting blue phosphorescence and cyan LPL. By fine-tuning the doping amount, the composite material U-Tb-100 achieves green LPL with a luminescent quantum yield of 56.4%, and an LPL duration of approximately 2-3 s, demonstrating tunable persistence. Single-crystal X-ray diffraction, spectral analysis, and theoretical calculation unveil that U-Tb-100 exhibits exceptional quantum yield and long-lived luminescence primarily due to the efficient sensitization of U monomer to RE ions and the PRET process between U and RE complexes. This ingenious strategy not only expands the repertoire of HOF materials but also facilitates the design of multifunctional LPL materials.

14.
BMJ Open Ophthalmol ; 9(1)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39179254

ABSTRACT

OBJECTIVE: To investigate the correlations between choroidal parameters and primary angle-closure suspect (PACS) in different age subgroups. METHODS AND ANALYSIS: Participants aged 50 years or older in a rural area of Daxing District, Beijing, were recruited. Swept-source optical coherence tomography was used to measure the choroidal parameters. Demographic, ocular biometry parameters and choroidal parameters were compared between the PACS and non-PACS (NPACS) eyes. Logistic analysis was performed to explore the association between the choroidal parameters and PACS. RESULTS: 192 (26.89%) subjects with PACS and 509 (71.29%) with PACS were analysed. Subjects were divided into two groups: group 1 (50-60 years, n=286) and group 2 (>60 years, n=415). In group 1, the mean subfoveal choroidal thickness of PACS eyes was 341.82±88.23 µm and thicker than NPACS eyes (315.07±83.53 µm, p=0.035). The choroidal volume was greater in PACS eyes (10.61±2.78 mm3) compared with NPACS eyes (9.66±2.49 mm3, p=0.013). In group 2, no significant difference in any choroidal parameters between PACS and NPACS was found. Multivariate regression demonstrated that increased choroidal volume was associated with PACS (OR 1.298, 95% CI 1.117 to 1.510, p<0.001) in group 1. CONCLUSIONS: In the age group of 50-60 years, PACS eyes had greater choroidal thickness and volume than NPACS eyes, and the increased total choroidal volume was a predisposing factor for PACS. TRIAL REGISTRATION NUMBER: ChiCTR2000037944.


Subject(s)
Choroid , Glaucoma, Angle-Closure , Tomography, Optical Coherence , Humans , Middle Aged , Glaucoma, Angle-Closure/pathology , Choroid/pathology , Choroid/diagnostic imaging , Female , Male , Aged , Intraocular Pressure/physiology , Age Factors , Cross-Sectional Studies
15.
BMC Ophthalmol ; 24(1): 379, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192272

ABSTRACT

PURPOSE: To assess the interactive relationship between blood pressure status and diabetic mellitus (DM) with ganglion cell complex (GCC) thickness in elderly individuals in rural China. METHODS: Participants aged 50 years and older in a rural area of Daxing District, Beijing, were recruited in this study from October 2018 to November 2018. All subjects underwent a comprehensive systemic and ocular examination. Blood pressure status was graded as normotension, controlled hypertension and uncontrolled hypertension according to blood pressure measurements and the use of any medication for hypertension treatment. GCC parameters were measured by spectral-domain optical coherence tomography (SD-OCT). Generalized linear models (GLM) adjusted for related potential confounders were used to assess the interaction between DM and blood pressure status. RESULTS: Among 1415 screened subjects (2830 eyes), a total of 1117 eyes were enrolled in the final analysis. GLM analysis showed a significant interactive relationship between DM with uncontrolled hypertension status (ß = 3.868, p = 0.011). GCC thickness would decrease 0.255 µm per year as the age increased (ß=-0.255, p < 0.001). In a subgroup of 574 subjects with uncontrolled hypertension, DM was associated with an increased average of GCC thickness (ß = 1.929, p = 0.022). CONCLUSIONS: The present results revealed a significant interactive relationship between blood pressure status and DM. The average GCC thickness increased in individuals with DM combined with uncontrolled hypertension, which should be considered in the measurement of GCC. Further studies are warranted to explore ganglion cells changes as a non-invasive method to detect neuron alterations in individuals with DM and uncontrolled hypertension. TRAIL REGISTRATION: The registration number of the present trial in the Chinese Clinical Trial Registry is ChiCTR2000037944.


Subject(s)
Blood Pressure , Hypertension , Nerve Fibers , Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Retinal Ganglion Cells/pathology , Male , Female , Middle Aged , Tomography, Optical Coherence/methods , Hypertension/complications , Hypertension/physiopathology , Aged , China/epidemiology , Blood Pressure/physiology , Nerve Fibers/pathology , Cross-Sectional Studies , Diabetic Retinopathy/diagnosis , Diabetes Mellitus/epidemiology , Rural Population/statistics & numerical data
16.
J Agric Food Chem ; 72(31): 17599-17607, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39046270

ABSTRACT

The discovery of readily available and easily modifiable new models is a crucial and practical solution for agrochemical innovation. Antifungal function-oriented fusion of triazole with the prevalidated lead (R)-LE001 affords a novel framework with a broad and enhanced antifungal spectrum. Characterized by the easy accessibility and adjustability of [1,2,4]triazolo[4,3-a]pyridine, modular fine-tuning provided a set of unprecedented leads (e.g., Z23, Z25, Z26, etc.) with superior antifungal potentials than the positive control boscalid. Candidate Z23 exhibited a more promising antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, and Phytophthora capsici with EC50 values of 0.7, 0.6, and 0.5 µM, respectively. This candidate could effectively control boscalid-resistant B. cinerea strains and also exhibit good vivo efficacy in controlling gray mold. Noteworthily, both the SDH-inhibition and the efficiency against Oomycete P. capsici are quite distinct from that of the positive control boscalid. A molecular docking simulation also differentiates Z23 from boscalid. These findings highlight the potential of [1,2,4]triazolo[4,3-a]pyridine amide as a novel antifungal model.


Subject(s)
Aniline Compounds , Ascomycota , Botrytis , Fungicides, Industrial , Niacinamide , Phytophthora , Plant Diseases , Triazoles , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Botrytis/drug effects , Botrytis/growth & development , Triazoles/chemistry , Triazoles/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Niacinamide/chemistry , Niacinamide/pharmacology , Structure-Activity Relationship , Phytophthora/drug effects , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Ascomycota/drug effects , Ascomycota/chemistry , Molecular Structure , Oxazoles/chemistry , Oxazoles/pharmacology
17.
PLoS One ; 19(7): e0307209, 2024.
Article in English | MEDLINE | ID: mdl-38995960

ABSTRACT

The UN's Sustainable Development Goals (SDGs) highlight the role of debt sustainability in achieving sustainable development. China's Belt and Road Initiative (BRI) is an international cooperation effort that is endorsed by over 150 countries and organizations. Given the alignment between BRI development goals and the SDGs, the issue of debt sustainability in BRI countries warrants attention. While existing studies focus on sovereign risk in debt sustainability, there is a lack of emphasis on currency risk, indicating a need for further investigation to mitigate risks and comprehensively evaluate debt stability. Using data from 142 countries, this study examines currency risk reduction in BRI countries by assessing currency competitiveness. We find that the US dollar (USD) is the most competitive currency among BRI countries, followed by the Euro (EUR), Chinese yuan (CNY), sterling pound (GBP), and Japanese yen (JPY). The USD maintains its competitive edge over time, making it the preferred choice, with the EUR as a less optimal option and the CNY showing potential. Geographically, the EUR's close ties with BRI countries lend it prominence, followed by the USD, with the CNY gaining traction. GBP and JPY are considered conservative choices. Recommendations for currency selection vary based on countries' competitiveness, bilateral relationships, and development status.


Subject(s)
Sustainable Development , China , Humans , Risk Assessment , International Cooperation , Seat Belts/statistics & numerical data , Transportation
18.
Zhonghua Nan Ke Xue ; 30(1): 44-50, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-39046413

ABSTRACT

OBJECTIVE: To investigate the clinical and genetic characteristics of a case of primary ciliary dyskinesia (PCD). METHODS: We collected the clinical data on a case of PCD treated in the Department of Reproductive Medicine of Linyi People's Hospital in July 2020, detected the genes of the patient by whole-exome sequencing (WES), verified the candidate mutations by Sanger sequencing, and predicted the protein structure of the mutant gene by SWISS-MODEL. RESULTS: The proband was found with the clinical phenotypes of chronic rhinitis, bronchiectasis, visceral transposition and male infertility. WES revealed a homozygous frameshift variation of c.12890dup (p.N4297Kfs*13) in exon 74 of the DNAH5 gene, which led to the premature termination of polypeptide chain synthesis and affected the gene function. SWISS-MODEL prediction showed that some of the amino acid residues were deleted after mutation, resulting in a 3D conformational change of the protein. This variation was not recorded in the ClinVar, gnomAD and OMIM databases and, according to the relevant guidelines of the American College of Genetics and Genomics, was classified as a pathogenic variation (PVS1+PM2_P+PM3_P). CONCLUSION: The homozygous variation of the DNAH5 gene c.12890dup (p.N4297Kfs*13) may be the cause of the clinical phenotype of this case of PCD, and the above findings have enriched the variation spectrum of the DNAH5 gene.


Subject(s)
Exome Sequencing , Frameshift Mutation , Humans , Male , Axonemal Dyneins/genetics , Phenotype , Homozygote , Ciliary Motility Disorders/genetics , Exons , Infertility, Male/genetics
19.
J Nanobiotechnology ; 22(1): 425, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030543

ABSTRACT

Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors ß-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/ß-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.


Subject(s)
Cell Proliferation , Exosomes , Fibroblasts , Hair Follicle , Mice, Nude , Regeneration , Vibrissae , Wnt Signaling Pathway , Wound Healing , beta Catenin , Animals , Mice , Fibroblasts/metabolism , Exosomes/metabolism , Vibrissae/physiology , beta Catenin/metabolism , Dermis/metabolism , Cell Movement , Lymphoid Enhancer-Binding Factor 1/metabolism
20.
PLoS One ; 19(7): e0307778, 2024.
Article in English | MEDLINE | ID: mdl-39052661

ABSTRACT

With the development of medical diagnosis and treatment, knowing the mechanical properties of living tissues becomes critical. The aim of this study was to investigation material properties of the fresh porcine kidney and the parametric characterization of its viscoelastic material behavior. The material investigation included uniaxial tension tests in different strain rates, relaxation tests, as well as hydrostatic compression tests on the samples extracted from the fresh porcine kidney cortex. Tension tests and relaxation tests were performed by a planar dog-bone specimen with a micron loading testing machine. Hydrostatic compression tests were performed on the kidney cylinder sample which was placed in a compression chamber. Furthermore, a nonlinear viscoelastic model recently proposed by us was employed to characterize the tension data at different strain rates and relaxation test data. The the experimental and numerical results show that the stress-strain relations of the porcine kidney cortex at different strain rates in tension are presented for the first time and a higher strain rate results in higher ultimate strength and initial Young modulus but a lower rupture strain. A damage-dependent visco-elastic model is employed to model the tension data at different strain rates and relaxation data and exhibits a good agreement with the experimental data, which also demonstrates that the damage has an obvious influence on the stress-strain relation. Through comparison with the existing reference covering the uniaxial compression data, it seems that the mechanical behavior of the porcine kidney cortex manifests a stress state-dependent mechanical behavior. The ultimate strength and rupture strain are larger in compression than that in tension.


Subject(s)
Kidney , Stress, Mechanical , Animals , Swine , Kidney/physiology , Biomechanical Phenomena , Compressive Strength , Elasticity , Elastic Modulus , Viscosity , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL