Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 459: 132005, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37467603

ABSTRACT

Many non-ferrous metal mining and smelting activities have caused severe metal(loid) contamination in the local soil environment. The metabolic activity of soil microorganisms in four areas affected by different metallurgical activities (production vs. waste disposal) was characterized using a contamination gradient from the contaminated site to the surrounding soils. Results indicated that the soil microcalorimetric and enzyme activities were correlated with the fractionated metal(loid) properties (p < 0.05). All four areas had high total As, Cd, Pb, Sb, and Zn concentrations, of which mobile As, Cu, Ni, Pb, Sb, and Zn were higher in the contaminated sites than the surrounding sites, reflecting an elevated environmental risk. Three contaminated site areas had lower microbial activities than their surrounding sites suggesting that high metal(loid) concentrations inhibited soil microbial communities. Interestingly, the fourth area (tailing pond) showed an opposite trend (i.e., increased microbial activity in contaminated vs. surrounding areas). The microbial thermodynamic parameters of this contaminated site were higher than its surrounding sites, suggesting that the selected microbial communities can develop a functional resistance to metal(loid)s stress. This study provides a theoretical basis for ecological prevention and control of metal-polluted areas.


Subject(s)
Metalloids , Metals, Heavy , Soil Pollutants , Metals, Heavy/toxicity , Metals, Heavy/analysis , Lead , Environmental Monitoring/methods , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil/chemistry , China
2.
Front Microbiol ; 11: 570606, 2020.
Article in English | MEDLINE | ID: mdl-33013801

ABSTRACT

Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.

SELECTION OF CITATIONS
SEARCH DETAIL
...