Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Hum Reprod ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725195

ABSTRACT

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

2.
Biol Reprod ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647664

ABSTRACT

OBJECTIVE: The purpose of this study is to investigate the role of high mobility group protein B1 (HMGB1) in placental development and fetal growth. METHODS: We employed the Cre-loxP recombination system to establish a placenta-specific HMGB1 knockout mouse model. Breeding HMGB1flox/flox mice with Elf5-Cre mice facilitated the knockout, leveraging Elf5 expression in extra-embryonic ectoderm, ectoplacental cone, and trophoblast giant cells at 12.5 days of embryonic development. The primary goal of this model was to elucidate the molecular mechanism of HMGB1 in placental development, assessing parameters such as placental weight, fetal weight, and bone development. Additionally, we utilized lentiviral interference and overexpression of HMGB1 in human trophoblast cells to further investigate HMGB1's functional role. RESULTS: Our findings indicate that HMGB1flox/floxElf5cre/+ mouse display fetal growth restriction (FGR), characterized by decreased placental and fetal weight and impaired bone development. And the absence of HMGB1 inhibits autophagosome formation, impairs lysosomal degradation, and disrupts autophagic flux. Depletion of HMGB1 in human trophoblast cells also suppresses cell viability, proliferation, migration, and invasion by inhibiting the ERK signaling pathway. Overexpression of HMGB1 observed the opposite phenotypes. CONCLUSIONS: HMGB1 participates in the regulation of autophagy through the ERK signaling pathway and affects placental development.

3.
World J Gastroenterol ; 30(6): 565-578, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38463028

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM: To investigate the impact of JOSD2 on the progression of ESCC. METHODS: Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS: Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION: JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Deubiquitinating Enzymes/genetics , Gene Expression Regulation, Neoplastic , Protein-Arginine N-Methyltransferases
4.
Nat Commun ; 15(1): 1182, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383554

ABSTRACT

High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative.


Subject(s)
Genetic Variation , Oryza , Evolution, Molecular , Porosity , Plant Breeding , Asia, Southeastern , Plant Weeds/genetics , Oryza/genetics
5.
Small ; : e2311056, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38377262

ABSTRACT

The poor efficiency and low immunogenicity of photodynamic therapy (PDT), and the immunosuppressive tumor microenvironment (ITM) lead to tumor recurrence and metastasis. In this work, TCPP-TER -Zn@RSV nanosheets (TZR NSs) that co-assembled from the endoplasmic reticulum (ER)-targeting photosensitizer TCPP-TER -Zn nanosheets (TZ NSs for short) and the autophagy promoting and indoleamine-(2, 3)-dioxygenase (IDO) inhibitor-like resveratrol (RSV) are fabricated to enhance antitumor PDT. TZR NSs exhibit improved therapeutic efficiency and amplified immunogenic cancer cell death (ICD) by ER targeting PDT and ER autophagy promotion. TZR NSs reversed the ITM with an increase of CD8+ T cells and reduce of immunosuppressive Foxp3 regulatory T cells, which effectively burst antitumor immunity thus clearing residual tumor cells. The ER-targeting TZR NSs developed in this paper presents a simple but valuable reference for high-efficiency tumor photodynamic immunotherapy.

6.
Sci Total Environ ; 912: 168839, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036138

ABSTRACT

As industrial and societal advancements progress, an increasing number of environmental pollutants linked to human existence have been substantiated to elicit neurotoxicity and developmental neural toxicity. For research in this field, human-derived neural cell lines have become excellent in vitro models. This study examines the utilization of immortalized cell lines, specifically the SH-SY5Y human neuroblastoma cell line, and neural cells derived from human pluripotent stem cells, in the investigation of neurotoxicity and developmental neural toxicity caused by environmental pollutants. The study also explores the culturing techniques employed for these cell lines and provides an overview of the standardized assays used to assess various biological endpoints. The environmental pollutants involved include a variety of organic compounds, heavy metals, and microplastics. The utilization of cell lines derived from human sources holds significant significance in elucidating the neurotoxic effects of environmental pollutants and the underlying mechanisms. Finally, we propose the possibility of improving the in vitro model of the human nervous system and the toxicity detection methods.


Subject(s)
Environmental Pollutants , Neuroblastoma , Humans , Environmental Pollutants/toxicity , Plastics , Cell Line , Neurons/physiology , Cell Line, Tumor
7.
J. physiol. biochem ; 79(4): 719-730, nov. 2023. ilus
Article in English | IBECS | ID: ibc-227547

ABSTRACT

Sonic hedgehog (SHH) signaling is vital for cell differentiation and proliferation during embryonic development, yet its role in cardiac, cerebral, and vascular pathophysiology is under debate. Recent studies have demonstrated that several compounds of SHH signaling regulate ion channels, which in turn affect the behavior of target cells. Some of these ion channels are involved in the cardio-cerebrovascular system. Here, we first reviewed the SHH signaling cascades, then its interaction with ion channels, and their impact on cardio-cerebrovascular diseases. Considering the complex cross talk of SHH signaling with other pathways that also affect ion channels and their potential impact on the cardio-cerebrovascular system, we highlight the necessity of thoroughly studying the effect of SHH signaling on ion homeostasis, which could serve as a novel mechanism for cardio-cerebrovascular diseases. (AU)


Subject(s)
Humans , Female , Pregnancy , Cerebrovascular Disorders , Hedgehog Proteins/metabolism , Cell Differentiation , Ion Channels/metabolism , Signal Transduction
8.
Sci Rep ; 13(1): 18424, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891423

ABSTRACT

Prostate cancer (PCa) patients with lymph node involvement (LNI) constitute a single-risk group with varied prognoses. Existing studies on this group have focused solely on those who underwent prostatectomy (RP), using statistical models to predict prognosis. This study aimed to develop an easily accessible individual survival prediction tool based on multiple machine learning (ML) algorithms to predict survival probability for PCa patients with LNI. A total of 3280 PCa patients with LNI were identified from the Surveillance, Epidemiology, and End Results (SEER) database, covering the years 2000-2019. The primary endpoint was overall survival (OS). Gradient Boosting Survival Analysis (GBSA), Random Survival Forest (RSF), and Extra Survival Trees (EST) were used to develop prognosis models, which were compared to Cox regression. Discrimination was evaluated using the time-dependent areas under the receiver operating characteristic curve (time-dependent AUC) and the concordance index (c-index). Calibration was assessed using the time-dependent Brier score (time-dependent BS) and the integrated Brier score (IBS). Moreover, the beeswarm summary plot in SHAP (SHapley Additive exPlanations) was used to display the contribution of variables to the results. The 3280 patients were randomly split into a training cohort (n = 2624) and a validation cohort (n = 656). Nine variables including age at diagnosis, race, marital status, clinical T stage, prostate-specific antigen (PSA) level at diagnosis, Gleason Score (GS), number of positive lymph nodes, radical prostatectomy (RP), and radiotherapy (RT) were used to develop models. The mean time-dependent AUC for GBSA, RSF, and EST was 0.782 (95% confidence interval [CI] 0.779-0.783), 0.779 (95% CI 0.776-0.780), and 0.781 (95% CI 0.778-0.782), respectively, which were higher than the Cox regression model of 0.770 (95% CI 0.769-0.773). Additionally, all models demonstrated almost similar calibration, with low IBS. A web-based prediction tool was developed using the best-performing GBSA, which is accessible at https://pengzihexjtu-pca-n1.streamlit.app/ . ML algorithms showed better performance compared with Cox regression and we developed a web-based tool, which may help to guide patient treatment and follow-up.


Subject(s)
Lymph Node Excision , Prostatic Neoplasms , Male , Humans , Prognosis , Lymph Node Excision/methods , Lymph Nodes/pathology , Prostatic Neoplasms/pathology , Prostate-Specific Antigen
9.
J Physiol Biochem ; 79(4): 719-730, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37676576

ABSTRACT

Sonic hedgehog (SHH) signaling is vital for cell differentiation and proliferation during embryonic development, yet its role in cardiac, cerebral, and vascular pathophysiology is under debate. Recent studies have demonstrated that several compounds of SHH signaling regulate ion channels, which in turn affect the behavior of target cells. Some of these ion channels are involved in the cardio-cerebrovascular system. Here, we first reviewed the SHH signaling cascades, then its interaction with ion channels, and their impact on cardio-cerebrovascular diseases. Considering the complex cross talk of SHH signaling with other pathways that also affect ion channels and their potential impact on the cardio-cerebrovascular system, we highlight the necessity of thoroughly studying the effect of SHH signaling on ion homeostasis, which could serve as a novel mechanism for cardio-cerebrovascular diseases. Activation of SHH signaling influence ion channels activity, which in turn influence ion homeostasis, membrane potential, and electrophysiology, could serve as a novel strategy for cardio-cerebrovascular diseases.


Subject(s)
Cerebrovascular Disorders , Hedgehog Proteins , Female , Pregnancy , Humans , Hedgehog Proteins/metabolism , Signal Transduction , Cell Differentiation , Ion Channels/metabolism
10.
Eur J Pharmacol ; 956: 175938, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37536623

ABSTRACT

Impaired endothelium-dependent vasodilation in atherosclerosis is a high-risk factor for myocardial infarction and ischemic stroke, and inflammation, necroptosis and apoptosis contribute to endothelial dysfunction in atherosclerosis. Although DL-3-n-butylphthalide (NBP) has been widely used in treating ischemic stroke, its effect on endothelium-dependent vasodilation remains unknown. This study aims to explore whether NBP is able to improve endothelium-dependent vasodilation in atherosclerosis and the underlying mechanisms. Male ApoE-/- mice were fed with a high-fat diet (HFD) for 9-16 weeks to establish a model of atherosclerosis. NBP were given to the mice after eating HFD for 6 weeks and atorvastatin served as a positive control. The endothelium-dependent vasodilation, the blood flow velocity, the atherosclerotic lesion area, the serum levels of lipids, inflammatory cytokines and necroptosis-relevant proteins (RIPK1, RIPK3 and MLKL), and the endothelial necroptosis and apoptosis within the aorta were measured. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL) for 48 h to mimic endothelial injury in atherosclerosis, lactate dehydrogenase release, the ratio of necroptosis and apoptosis and the expression of necroptosis-relevant proteins were examined. Similar to atorvastatin, NBP improves endothelium-dependent vasodilation, decreases aortic flow velocity and reduces atherosclerotic lesion area in HFD-fed ApoE-/- mice, concomitant with a reduction in serum lipids, inflammatory cytokines and necroptosis-relevant proteins, and endothelial necroptosis and apoptosis. Consistently, NBP inhibited necroptosis and apoptosis in ox-LDL-treated HUVECs. Based on these observations, we conclude that NBP exerts beneficial effects on improving the endothelium-dependent vasodilation in atherosclerosis via suppressing inflammation, endothelial necroptosis and apoptosis.


Subject(s)
Atherosclerosis , Ischemic Stroke , Male , Humans , Mice , Animals , Diet, High-Fat/adverse effects , Vasodilation , Atorvastatin/pharmacology , Necroptosis , Atherosclerosis/metabolism , Human Umbilical Vein Endothelial Cells , Inflammation/metabolism , Endothelium/metabolism , Cytokines/metabolism , Ischemic Stroke/metabolism , Apoptosis , Apolipoproteins E/genetics , Mice, Knockout
11.
Environ Pollut ; 336: 122374, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37634564

ABSTRACT

Aquatic invertebrates are the organisms most susceptible to ammonia toxicity. However, the toxic effects of ammonia on invertebrates are still poorly understood. This study reviews the research progress in ammonia toxicology for the period from 1986 to 2023, focusing on the effects on invertebrates. Through examining the toxic effects of ammonia at different levels of organization (community, individual, tissue and physiology, and molecular) as well as the results from omics studies, we determined that the most significant effects were on the reproductive capacity of invertebrates and the growth of offspring, although different populations show variation in their tolerance to ammonia, and tissues have varied potential to respond to ammonia stress. A multicomponent analysis is an in-depth technique employed in toxicological studies, as it can be used to explore the enrichment pathways and functional genes expressed under ammonia stress. This study comprehensively discusses ammonia toxicity from multiple aspects in order to provide new insights into the toxic effects of ammonia on aquatic invertebrates.

12.
Zookeys ; 1172: 1-14, 2023.
Article in English | MEDLINE | ID: mdl-38317689

ABSTRACT

In this paper, a new species of Entedon Dalman, E.flavifemursp. nov. is described from Tibet and three species, E.albifemur Kamijo, E.crassiscapus Erdös, and E.nomizonis Kamijo are reported from China for the first time. A detailed description and illustrations of the new species are provided, as well as diagnoses and illustrations of the three newly recorded species.

14.
Nat Commun ; 13(1): 1902, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393424

ABSTRACT

All extant core-eudicot plants share a common ancestral genome that has experienced cyclic polyploidizations and (re)diploidizations. Reshuffling of the ancestral core-eudicot genome generates abundant genomic diversity, but the role of this diversity in shaping the hierarchical genome architecture, such as chromatin topology and gene expression, remains poorly understood. Here, we assemble chromosome-level genomes of one diploid and three tetraploid Panax species and conduct in-depth comparative genomic and epigenomic analyses. We show that chromosomal interactions within each duplicated ancestral chromosome largely maintain in extant Panax species, albeit experiencing ca. 100-150 million years of evolution from a shared ancestor. Biased genetic fractionation and epigenetic regulation divergence during polyploidization/(re)diploidization processes generate remarkable biochemical diversity of secondary metabolites in the Panax genus. Our study provides a paleo-polyploidization perspective of how reshuffling of the ancestral core-eudicot genome leads to a highly dynamic genome and to the metabolic diversification of extant eudicot plants.


Subject(s)
Genome, Plant , Panax , Chromatin/genetics , Chromosomes , Epigenesis, Genetic , Evolution, Molecular , Genome, Plant/genetics , Panax/genetics , Phylogeny , Polyploidy
15.
Nature ; 603(7903): 824-828, 2022 03.
Article in English | MEDLINE | ID: mdl-35355002

ABSTRACT

Topological electronic flattened bands near or at the Fermi level are a promising route towards unconventional superconductivity and correlated insulating states. However, the related experiments are mostly limited to engineered materials, such as moiré systems1-3. Here we present a catalogue of the naturally occuring three-dimensional stoichiometric materials with flat bands around the Fermi level. We consider 55,206 materials from the Inorganic Crystal Structure Database catalogued using the Topological Quantum Chemistry website4,5, which provides their structural parameters, space group, band structure, density of states and topological characterization. We combine several direct signatures and properties of band flatness with a high-throughput analysis of all crystal structures. In particular, we identify materials hosting line-graph or bipartite sublattices-in either two or three dimensions-that probably lead to flat bands. From this trove of information, we create the Materials Flatband Database website, a powerful search engine for future theoretical and experimental studies. We use the database to extract a curated list of 2,379 high-quality flat-band materials, from which we identify 345 promising candidates that potentially host flat bands with charge centres that are not strongly localized on the atomic sites. We showcase five representative materials and provide a theoretical explanation for the origin of their flat bands close to the Fermi energy using the S-matrix method introduced in a parallel work6.

16.
Zookeys ; 1049: 1-14, 2021.
Article in English | MEDLINE | ID: mdl-34321952

ABSTRACT

A new species of Asecodes Förster, A. medogense sp. nov. is described from Tibet, China and A. reticulatum (Kamijo) is reported from China for the first time. A key to all known species of genus Asecodes in China is provided.

17.
Genome Biol Evol ; 13(5)2021 05 07.
Article in English | MEDLINE | ID: mdl-33713106

ABSTRACT

Genes duplicated by whole genome duplication (WGD) and small-scale duplication (SSD) have played important roles in adaptive evolution of all flowering plants. However, it still remains underinvestigated how the distinct models of duplication events and their contending evolutionary patterns have shaped the genome and epigenomes of extant plant species. In this study, we investigated the contribution of the WGD- and SSD-derived duplicate genes to the genome evolution of one diploid and three closely related allotetraploid Panax species based on genome, methylome, and proteome data sets. Our genome-wide comparative analyses revealed that although the ginseng species complex was recently diverged, they have evolved distinct overall patterns of nucleotide variation, cytosine methylation, and protein-level expression. In particular, genetic and epigenetic asymmetries observed in the recent WGD-derived genes are largely consistent across the ginseng species complex. In addition, our results revealed that gene duplicates generated by ancient WGD and SSD mechanisms exhibited distinct evolutionary patterns. We found the ancient WGD-derived genes (i.e., ancient collinear gene) are genetically more conserved and hypomethylated at the cytosine sites. In contrast, some of the SSD-derived genes (i.e., dispersal duplicated gene) showed hypermethylation and high variance in nucleotide variation pattern. Functional enrichment analyses of the duplicated genes indicated that adaptation-related traits (i.e., photosynthesis) created during the distant ancient WGDs are further strengthened by both the more recent WGD and SSD. Together, our findings suggest that different types of duplicated genes may have played distinct but relaying evolutionary roles in the polyploidization and speciation processes in the ginseng species complex.


Subject(s)
Gene Duplication , Panax/genetics , Polyploidy , DNA Methylation , Evolution, Molecular , Genome, Plant , Magnoliopsida/genetics , Panax/classification
18.
Zookeys ; 1017: 21-36, 2021.
Article in English | MEDLINE | ID: mdl-33633481

ABSTRACT

Four new species of Closterocerus Westwood, C. rectisulcus sp. nov., C. shaanxiensis sp. nov., C. separatus sp. nov. and C. unifasciatus sp. nov. are described from China, each with a distinct pattern on the fore wings, and belonging to subgenus Closterocerus. A key to all species of the genus Closterocerus in China is provided.

19.
Eur J Drug Metab Pharmacokinet ; 44(6): 787-796, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31175627

ABSTRACT

BACKGROUND AND OBJECTIVES: Honokiol, a major constituent isolated from Magnolia officinalis, is regarded as a phytochemical marker and bioactive substance present in many traditional Chinese medicines. However, the effect of honokiol on cytochrome P450 (CYP) has not been thoroughly investigated. The aim of this study was to investigate the effect of honokiol on CYP1A2 and CYP2C11 in vitro and in vivo. METHODS: The effect of honokiol on CYP1A2 and CYP2C11 was investigated with rat liver microsomes (RLMs) by measuring phenacetin and tolbutamide metabolism (probe drugs for CYP1A2 and CYP2C11, respectively), and then explored in vivo by measuring the effect of honokiol (2.5 and 5 mg/kg, intravenous injection) on the pharmacokinetics of theophylline and tolbutamide (probe drugs for CYP1A2 and CYP2C11, respectively) in rats in vivo. RESULTS: Honokiol inhibited the formation of acetaminophen from phenacetin and 4-hydroxytolbutamide from tolbutamide in RLMs, with inhibition constant (Ki) values of 1.6 µM and 16.5 µM, respectively. In vivo, honokiol (2.5 or 5.0 mg/kg) increased the half-life (t1/2) of theophylline by 40.9% and 119.9%, decreased the clearance (CL) by 23.8% and 42.9%, and increased the area under the curve (AUC) by 41.3% and 83.4%, respectively. Similarly, the t1/2 of tolbutamide increased by 25.5% and 33.8%, the CL decreased by 14.3% and 19.1%, and the AUC increased by 19.2% and 25.7%, respectively. CONCLUSION: The inhibition of CYP1A2 by honokiol is greater than the inhibition of CYP2C11. The changes in the pharmacokinetics of theophylline and tolbutamide in rats treated with honokiol are due to the inhibition of CYP1A2 and CYP2C11 activity in a dose-dependent manner.


Subject(s)
Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Cytochrome P450 Family 2/antagonists & inhibitors , Lignans/pharmacology , Steroid 16-alpha-Hydroxylase/antagonists & inhibitors , Animals , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Cytochrome P-450 CYP1A2 , Cytochromes/antagonists & inhibitors , Lignans/chemistry , Lignans/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley , Theophylline/pharmacokinetics , Tolbutamide/pharmacokinetics
20.
Nanoscale ; 11(23): 11114-11120, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31166339

ABSTRACT

Inspired by biological neural systems, neuromorphic devices may lead to new computing paradigms for exploring cognition, learning and limits of parallel computation. Synapses form the basis of neuromorphic computing and have attracted significant research interest in recent years. Herein, a three-terminal transistor based on a transition metal sulfide and zinc oxide heterojunction is proposed for emulating biological synapses. The transistor exhibits an ON/OFF ratio (104) and significant rectifying behavior with forward-to-reverse bias current ratios of 104. The device demonstrates the essential synaptic behaviors, such as excitatory postsynaptic current, modulation of synaptic weight and paired-pulse facilitation. Furthermore, we show that the hysteretic effect of the transfer curves and the post-synapse current triggered by the presynaptic pulses can be modulated by illumination, and the current under illumination conditions is about 10 times greater than that in the dark. These synapses combine photonic with electric neuromorphic functions, thus showing the application prospects of the optoelectronic interfaces for integrated photonic circuits based on mixed-mode electro-optical operation. Hence, this work offers a new landscape for 2D-material electronics and encourages future research on neuro-electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...