Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
J Biol Chem ; 300(5): 107270, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38599381

ABSTRACT

Higher demand for nutrients including glucose is characteristic of cancer. "Starving cancer" has been pursued to curb tumor progression. An intriguing regime is to inhibit glucose transporter GLUT1 in cancer cells. In addition, during cancer progression, cancer cells may suffer from insufficient glucose supply. Yet, cancer cells can somehow tolerate glucose starvation. Uncovering the underlying mechanisms shall shed insight into cancer progression and benefit cancer therapy. TFE3 is a transcription factor known to activate autophagic genes. Physiological TFE3 activity is regulated by phosphorylation-triggered translocation responsive to nutrient status. We recently reported TFE3 constitutively localizes to the cell nucleus and promotes cell proliferation in kidney cancer even under nutrient replete condition. It remains unclear whether and how TFE3 responds to glucose starvation. In this study, we show TFE3 promotes kidney cancer cell resistance to glucose starvation by exposing cells to physiologically relevant glucose concentration. We find glucose starvation triggers TFE3 protein stabilization through increasing its O-GlcNAcylation. Furthermore, through an unbiased functional genomic study, we identify SLC36A1, a lysosomal amino acid transporter, as a TFE3 target gene sensitive to TFE3 protein level. We find SLC36A1 is overexpressed in kidney cancer, which promotes mTOR activity and kidney cancer cell proliferation. Importantly, SLC36A1 level is induced by glucose starvation through TFE3, which enhances cellular resistance to glucose starvation. Suppressing TFE3 or SLC36A1 significantly increases cellular sensitivity to GLUT1 inhibitor in kidney cancer cells. Collectively, we uncover a functional TFE3-SLC36A1 axis that responds to glucose starvation and enhances starvation tolerance in kidney cancer.

2.
ACS Nano ; 18(19): 12524-12536, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687979

ABSTRACT

Highly active and low-cost co-catalysts have a positive effect on the enhancement of solar H2 production. Here, we employ two-dimensional (2D) MBene as a noble-metal-free co-catalyst to boost semiconductor for photocatalytic H2 production. MoB MBene is a 2D nanoboride, which is directly made from MoAlB by a facile hydrothermal etching and manual scraping off process. The as-synthesized MoB MBene with purity >95 wt % is treated by ultrasonic cell pulverization to obtain ultrathin 2D MoB MBene nanosheets (∼0.61 nm) and integrated with CdS via an electrostatic interaction strategy. The CdS/MoB composites exhibit an ultrahigh photocatalytic H2 production activity of 16,892 µmol g-1 h-1 under visible light, surpassing that of pure CdS by an exciting factor of ≈1135%. Theoretical calculations and various measurements account for the high performance in terms of Gibbs free energy, work functions, and photoelectrochemical properties. This work discovers the huge potential of these promising 2D MBene family materials as high-efficiency and low-cost co-catalysts for photocatalytic H2 production.

3.
RSC Adv ; 14(16): 11400-11410, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38595711

ABSTRACT

The heavy-metal ion critical role in γ-dicalcium silicate (γ-C2S) both in terms of solidification mechanism and hydration is still unclear. In this work, the solidification mechanism and the effect on initiating hydration of these three heavy-metal ions (Ba, Cd, and Cr) in γ-C2S is systemically studied by well-defined ab initio calculations. The calculated results show that the solid solution tendency of ions originates from the charge contribution, and the charge localization caused by the doping of Cr ions weakens the surface water adsorption. These insights will provide theoretical guidance for the low-carbon cement development by γ-C2S.

4.
J Phys Chem B ; 128(10): 2569-2582, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38445602

ABSTRACT

The structural and chemical modifications on the surface of pure and alkali-doped aluminosilicate (AS) glasses due to hydrolysis are investigated using ab initio molecular dynamics. The effects of water on the glass network are fully elucidated by analyzing the short- and intermediate-range structural orders embedded in the pair distribution function, bond length and angle distribution, coordination number, and interatomic bonding. A novel concept of total bond order is used to quantify and compare the strength of bonds in hydrated and unhydrated glasses. We show that AS glass is hydrolyzed by water diffusion near the surface and by proton (H+) transfers into the bulk, which increases with time. Hence, a dissolved glass-water interface becomes rich in Si-OH and Al-OH. The alkali ions associated with the nonbridging oxygen accelerate the hydrolysis by facilitating water and H+ diffusion. Al is more impacted by hydrolysis than Si, resulting in greater variation in the Al-O bond order than Si-O. Doping of NaCl and KCl enhances the ionization of water and the hydrolysis of ASs with increased salt concentration. The KCl doping ionizes more water molecules and causes more degradation of the glass network than NaCl. Co-doping of Na and K results in a mixed alkali effect due to complex interatomic bonding from different-sized ions. These exceptionally detailed findings in highly complex glasses with varying salt compositions provide new and unprecedented atomistic insights that can help to understand the hydrolysis and dissolution mechanisms of ASs and other silicate glasses.

5.
J Biol Chem ; 300(4): 107152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462165

ABSTRACT

Prostate cancer is a leading cause of cancer-related mortality in males. Dysregulation of RNA adenine N-6 methylation (m6A) contributes to cancer malignancy. m6A on mRNA may affect mRNA splicing, turnover, transportation, and translation. m6A exerts these effects, at least partly, through dedicated m6A reader proteins, including YTH domain-containing family protein 2 (YTHDF2). YTHDF2 is necessary for development while its dysregulation is seen in various cancers, including prostate cancer. However, the mechanism underlying the dysregulation and function of YTHDF2 in cancer remains elusive. Here, we find that the deubiquitinase OUT domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) increases YTHDF2 protein stability by inhibiting its ubiquitination. With in vivo and in vitro ubiquitination assays, OTUB1 is shown to block ubiquitin transfer to YTHDF2 independent of its deubiquitinase activity. Furthermore, analysis of functional transcriptomic data and m6A-sequencing data identifies PRSS8 as a potential tumor suppressor gene. OTUB1 and YTHDF2 decrease mRNA and protein levels of PRSS8, which is a trypsin-like serine protease. Mechanistically, YTHDF2 binds PRSS8 mRNA and promotes its degradation in an m6A-dependent manner. Further functional study on cellular and mouse models reveals PRSS8 is a critical downstream effector of the OTUB1-YTHDF2 axis in prostate cancer. We find in prostate cancer cells, PRSS8 decreases nuclear ß-catenin level through E-cadherin, which is independent of its protease activity. Collectively, our study uncovers a key regulator of YTHDF2 protein stability and establishes a functional OTUB1-YTHDF2-PRSS8 axis in prostate cancer.


Subject(s)
Cell Proliferation , Deubiquitinating Enzymes , Prostatic Neoplasms , RNA-Binding Proteins , Serine Endopeptidases , Animals , Humans , Male , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Stability , RNA Stability/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Serine Endopeptidases/metabolism , Ubiquitination
6.
J Biol Chem ; 300(3): 105707, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309505

ABSTRACT

Liver cancer is notoriously refractory to conventional therapeutics. Tumor progression is governed by the interplay between tumor-promoting genes and tumor-suppressor genes. BRD4, an acetyl lysine-binding protein, is overexpressed in many cancer types, which promotes activation of a pro-tumor gene network. But the underlying mechanism for BRD4 overexpression remains incompletely understood. In addition, understanding the regulatory mechanism of BRD4 protein level will shed insight into BRD4-targeting therapeutics. In this study, we investigated the potential relation between BRD4 protein level and P53, the most frequently dysregulated tumor suppressor. By analyzing the TCGA datasets, we first identify a strong negative correlation between protein levels of P53 and BRD4 in liver cancer. Further investigation shows that P53 promotes BRD4 protein degradation. Mechanistically, P53 indirectly represses the transcription of USP1, a deubiquitinase, through the P21-RB1 axis. USP1 itself is also overexpressed in liver cancer and we show USP1 deubiquitinates BRD4 in vivo and in vitro, which increases BRD4 stability. With cell proliferation assays and xenograft model, we show the pro-tumor role of USP1 is partially mediated by BRD4. With functional transcriptomic analysis, we find the USP1-BRD4 axis upholds expression of a group of cancer-related genes. In summary, we identify a functional P53-P21-RB1-USP1-BRD4 axis in liver cancer.


Subject(s)
Bromodomain Containing Proteins , Cell Cycle Proteins , Liver Neoplasms , Nuclear Proteins , Transcription Factors , Ubiquitin-Specific Proteases , Humans , Bromodomain Containing Proteins/genetics , Bromodomain Containing Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Genes, Tumor Suppressor , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Retinoblastoma Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/metabolism
7.
Water Sci Technol ; 89(4): 1028-1046, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38423615

ABSTRACT

This paper proposes an adaptive river discharge measurement method based on spatiotemporal image velocimetry (STIV) and optical flow to solve the problem of blurred texture features and limited measurement accuracy under complex natural environmental conditions. Optical flow tracking generates spatiotemporal images by following the flow mainstream direction of rivers with both regular and irregular natural banks. A texture similarity function filtering method effectively enhances spatiotemporal texture features. The proposed method is applied to a natural river, with measurement results from a propeller-type current meter used as truth values. It is evaluated and compared with three other methods regarding measurement accuracy, error, and other evaluation indices. The results demonstrate that the method significantly improves spatiotemporal image quality. Its estimation outcomes perform better across all evaluation metrics, enhancing the adaptability and accuracy of the flow measurement method.


Subject(s)
Optic Flow , Rivers , Rheology/methods
8.
Mater Horiz ; 11(7): 1769-1778, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38306016

ABSTRACT

Ammonia (NH3) plays important roles in chemistry, the environment, and energy; however, the synthesis of NH3 relies heavily on the Haber-Bosch process, causing serious environmental pollution and energy consumption. A clean and effective strategy for the synthesis of NH3 involves nitrogen (N2) being transformed to ammonia (NH3) using electrocatalysis. Adjusting the magnetism of electrocatalysts may improve their performance, and therefore, four magnetic states, nonmagnetic (NM), ferromagnetic (FM), interlayer antiferromagnetic (Inter-AFM), and intra-layer antiferromagnetic (Intra-AFM) Cr2CO2-MXene were designed to explore magnetoelectrocatalysis performance using well-defined density functional theory (DFT) calculations in this study. Upon comparing the nitrogen reduction limiting potentials of N2 molecules on the surface of the four different magnetic states in Cr2CO2-MXene, and the selectivity calculations of the hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR), the Inter-AFM Cr2CO2-MXene is shown to be a better NRR electrocatalyst than the other three cases. This study paves way to unravel the mystery of the spin-catalytic mechanism and will lay a solid foundation for eNRR electrocatalysts with magnetic materials for environmental and energy applications.

9.
Small ; 20(16): e2308528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38012526

ABSTRACT

The emergence of amorphous 2D materials has opened up new avenue for materials science and nanotechnology in the recent years. Their unique disordered structure, excellent large-area uniformity, and low fabrication cost make them important for various industrial applications. However, there have no reports on the amorphous MXene materials. In this work, the amorphous Ti2C-MXene (a-Ti2C-MXene) model is built by ab initio molecular dynamics (AIMD) approach. This model is a unique amorphous model, which is totally different from continuous random network (CRN) model for silicate glass and amorphous model for amorphous 2D BN and graphene. The structure analysis shows that the a-Ti2C-MXene composited by [Ti5C] and [Ti6C] cluster, which are surrounded by the region of mixed cluster [TixC], [Ti-Ti] cluster, and [C-C] cluster. There is a high chemical activity for hydrogen evolution reaction (HER) in a-Ti2C-MXene with |ΔGH| 0.001 eV, implying that they serve as the potential boosting HER performance. The work provides insights that can pave the way for future research on novel MXene materials, leading to their increased applications in various fields.

10.
Small ; 19(52): e2303867, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649219

ABSTRACT

Producing solar fuels over photocatalysts under light irradiation is a considerable way to alleviate energy crises and environmental pollution. To develop the yields of solar fuels, photocatalysts with broad light absorption, fast charge carrier migration, and abundant reaction sites need to be designed. Electrospun 1D nanofibers with large specific areas and high porosity have been widely used in the efficient production of solar fuels. Nevertheless, it is challenging to do in-depth mechanism research on electrospun nanofiber-based photocatalysts since there are multiple charge transfer routes and various reaction sites in these systems. Here, the basic principles of electrospinning and photocatalysis are systemically discussed. Then, the different roles of electrospun nanofibers played in recent research to boost photocatalytic efficiency are highlighted. It is noteworthy that the working principles and main advantages of in situ irradiated photoelectron spectroscopy (ISI-XPS), a new technique to investigate migration routes of charge carriers and identify active sites in electrospun nanofibers based photocatalysts, are summarized for the first time. At last, a brief summary on the future orientation of photocatalysts based on electrospun nanofibers as well as the perspectives on the development of the ISI-XPS technique are also provided.

11.
Mater Horiz ; 10(10): 4278-4292, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37439186

ABSTRACT

Inspired by MXene nanosheets and their regulation of surface functional groups, a series of Ti3C2-MXene-based single TM atom electrocatalysts with a doped boron (B) atom (TM@Ti3C2O2-xBx, TM is V, Cr, Mn, Fe, Co or Ni, x = 0.11) are proposed for achieving a high performance catalytic CO2 reduction reaction (CO2RR). The results reveal that the doped B atom involves in the adsorption reaction of CO2 molecules and CO intermediates in the CO2RR. The TM-to-C and B-to-C π-back bonding contribute to the activation of the CO2 molecules and CO intermediates in the CO2RR. Enough electrons from the single TM atom and B atom occupied orbitals can be injected into the CO2 molecules and *CO intermediates through direct bonding interactions, which effectively alleviates the difficulty of the first hydrogenation reaction step and further helps CO reduction towards CH4. The calculated values of ΔG for the first hydrogenation reaction and the formation of *CHO on Ti3C2O2-xBx are significantly smaller than those of other single-atom catalysts (SACs). Fe@Ti3C2O2-xBx is found to have the highest electrocatalytic activity with a limiting potential of ∼0.40 V and exhibits a high selectivity for obtaining CH4 through the CO2RR compared with the hydrogen evolution reaction. This work is expected to open a research path for engineering the charge-orbital state of the innate atoms of a substrate based on mechanistic insights, which guides the rational design of highly selective MXene-based CO2RR electrocatalysts.

12.
Adv Mater ; 35(26): e2300067, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37147784

ABSTRACT

Recently, novel amorphous nanomaterials formed by introducing atomic irregular arrangement factors have been successfully fabricated, showing superior performance in catalysis, energy storage, and mechanics. Among them, 2D amorphous nanomaterials are the stars, as they combine the benefits of both 2D structure and amorphous. Up to now, many research studies have been published on the study of 2D amorphous materials. However, as one of the most important parts of 2D materials, the research on MXenes mainly focuses on the crystalline counterpart, while the study of highly disordered forms is much less. This work will provide insight into the possibility of MXenes amorphization, and discusses the application prospect of amorphous MXenes materials.

13.
Small ; 19(28): e2301116, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37191326

ABSTRACT

Although challenges remain, synergistic adjusting various microstructures and photo/electrochemical parameters of graphitic carbon nitride (g-C3 N4 ) in photocatalytic hydrogen evolution reaction (HER) are the keys to alleviating the energy crisis and environmental pollution. In this work, a novel nitrogen-defective and sulfur-doped g-C3 N4 (S-g-C3 N4 -D) is designed elaborately. Subsequent physical and chemical characterization proved that the developed S-g-C3 N4 -D not only displays well-defined 2D lamellar morphology with a large porosity and a high specific surface area but also has an efficient light utilization and carriers-separation and transfer. Moreover, the calculated optimal Gibbs free energy of adsorbed hydrogen (ΔGH* ) for S-g-C3 N4 -D at the S active sites is close to zero (≈0.24 eV) on the basis of first-principle density functional theory (DFT). Accordingly, the developed S-g-C3 N4 -D catalyst shows a high H2 evolution rate of 5651.5 µmol g-1  h-1 . Both DFT calculations and experimental results reveal that a memorable defective g-C3 N4 /S-doped g-C3 N4 step-scheme heterojunction is constructed between S-doped domains and N-defective domains in the structural configuration of S-g-C3 N4 -D. This work exhibits a significant guidance for the design and fabrication of high-efficiency photocatalysts.

14.
Small ; 19(35): e2300868, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37098649

ABSTRACT

The main obstacles for the commercial application of Lithium-Sulfur (Li-S) full batteries are the large volume change during charging/discharging process, the shuttle effect of lithium polysulfide (LiPS), sluggish redox kinetics, and the indisciplinable dendritic Li growth. Especially the overused of metal Li leads to the low utilization of active Li, which seriously drags down the actual energy density of Li-S batteries. Herein, an efficient design of dual-functional CoSe electrocatalyst encapsulated in carbon chain-mail (CoSe@CCM) is employed as the host both for the cathode and anode regulation simultaneously. The carbon chain-mail constituted by carbon encapsulated layer cross-linking with carbon nanofibers protects CoSe from the corrosion of chemical reaction environment, ensuring the high activity of CoSe during the long-term cycles. The Li-S full battery using this carbon chain-mail catalyst with a lower negative/positive electrode capacity ratio (N/P < 2) displays a high areal capacity of 9.68 mAh cm-2 over 150 cycles at a higher sulfur loading of 10.67 mg cm-2 . Additionally, a pouch cell is stable for 80 cycles at a sulfur loading of 77.6 mg, showing the practicality feasibility of this design.

15.
J Biol Chem ; 299(5): 104621, 2023 05.
Article in English | MEDLINE | ID: mdl-36935008

ABSTRACT

Autophagy plays a pivotal role in physiology and pathophysiology, including cancer. Mechanisms of autophagy dysregulation in cancer remain elusive. Loss of function of TRIM28, a multifunction protein, is seen in familial kidney malignancy, but the mechanism by which TRIM28 contributes to the etiology of kidney malignancy is unclear. In this study, we show TRIM28 retards kidney cancer cell proliferation through inhibiting autophagy. Mechanistically, we find TRIM28 promotes ubiquitination and proteasome-mediated degradation of transcription factor TFE3, which is critical for autophagic gene expression. Genetic activation of TFE3 due to gene fusion is known to cause human kidney malignancy, but whether and how transcription activation by TFE3 involves chromatin changes is unclear. Here, we find another mode of TFE3 activation in human renal carcinoma. We find that TFE3 is constitutively localized to the cell nucleus in human and mouse kidney cancer, where it increases autophagic gene expression and promotes cell autophagy as well as proliferation. We further uncover that TFE3 interacts with and recruits histone H3K27 demethylase KDM6A for autophagic gene upregulation. We reveal that KDM6A contributes to expression of TFE3 target genes through increasing H3K4me3 rather than demethylating H3K27. Collectively, in this study, we identify a functional TRIM28-TFE3-KDM6A signal axis, which plays a critical role in kidney cancer cell autophagy and proliferation.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Tripartite Motif-Containing Protein 28 , Animals , Humans , Mice , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Renal Cell/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Histone Demethylases/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism
16.
Front Plant Sci ; 14: 1114105, 2023.
Article in English | MEDLINE | ID: mdl-36968353

ABSTRACT

Orchids produce large numbers of dust-like seeds that rely heavily on orchid mycorrhizal fungi (OMFs) for germination. Using OMFs to facilitate orchid proliferation is considered an effective method for orchid conservation but still presents challenges in practice. In this study, orchid seed-fungus complexes, in which orchid seeds and fungal mycelia were embedded together to form granules, were developed as platforms to facilitate seed germination and seedling production. Overall, seedlings were produced by seed-fungus complexes for five orchid species with large variations in the percentages of seedlings produced among species/treatments. For the different fungal treatments in Dendrobium officinale, Sebacinales LQ performed much better than the other fungal strains. At 90 days after sowing, 75.8±2.6% seedlings were produced in the LQ treatment, which was significantly higher than in the Tulasnella sp. JM (22.0±3.0%) and Tulasnella sp. TPYD-2 (5.3±1.0%) treatments, as well as in the LQ and TPYD-2 cocultured treatment (40.4±3.2%), while no seedlings were formed in the Tulasnella sp. SSCDO-5 or control treatments. For the other four orchid species, only one compatible fungus for each species was used, and the percentages of seedlings in epiphytic Dendrobium devonianum (67.2±2.9%) and D. nobile (38.9±2.8%) were much higher than those in terrestrial Paphiopedilum spicerianum (2.9±1.1%) and Arundina graminifolia (6.7±2.1%) at 90 days after sowing. Adding 1% polymer water-absorbent resin to the seed-fungus complexes of D. officinale seeds with fungal strain Sebacinales LQ significantly increased seedling formation, while other additional substances showed negative effects on seedling formation. For the storage of seed-fungus complexes, it is recommended to store the seed-fungus complexes in valve bags at room temperature for a short time and at a low temperature of 4°C for no more than 30 days. As a platform for symbiotic seed germination, the seed-fungus complex can facilitate seed germination, produce seedlings and support subsequent seedling growth, and its seedling productivity depends on seed germination characteristics, seed viability, and the efficiency of fungi. Seed-fungus complexes have great potential to be used as propagules in orchid conservation.

17.
Plant Physiol ; 192(3): 2554-2568, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36988071

ABSTRACT

Mycorrhizae are ubiquitous symbioses established between fungi and plant roots. Orchids, in particular, require compatible mycorrhizal fungi for seed germination and protocorm development. Unlike arbuscular mycorrhizal fungi, which have wide host ranges, orchid mycorrhizal fungi are often highly specific to their host orchids. However, the molecular mechanism of orchid mycorrhizal symbiosis is largely unknown compared to that of arbuscular mycorrhizal and rhizobial symbiosis. Here, we report that an endophytic Sebacinales fungus, Serendipita indica, promotes seed germination and the development of protocorms into plantlets in several epiphytic Epidendroideae orchid species (6 species in 2 genera), including Dendrobium catenatum, a critically endangered orchid with high medicinal value. Although plant-pathogen interaction and high meristematic activity can induce the hypoxic response in plants, it has been unclear whether interactions with beneficial fungi, especially mycorrhizal ones, also involve the hypoxic response. By studying the symbiotic relationship between D. catenatum and S. indica, we determined that hypoxia-responsive genes, such as those encoding alcohol dehydrogenase (ADH), are highly induced in symbiotic D. catenatum protocorms. In situ hybridization assay indicated that the ADH gene is predominantly expressed in the basal mycorrhizal region of symbiotic protocorms. Additionally, the ADH inhibitors puerarin and 4-methylpyrazole both decreased S. indica colonization in D. catenatum protocorms. Thus, our study reveals that S. indica is widely compatible with orchids and that ADH and its related hypoxia-responsive pathway are involved in establishing successful symbiotic relationships in germinating orchids.


Subject(s)
Basidiomycota , Dendrobium , Mycorrhizae , Orchidaceae , Symbiosis , Dendrobium/genetics , Seeds , Mycorrhizae/physiology , Basidiomycota/physiology , Orchidaceae/genetics , Phylogeny
18.
ACS Omega ; 8(4): 4261-4269, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743015

ABSTRACT

Ammonia (NH3) detection at the early stage is an important precaution for human health and agricultural production. However, conventional sensing materials are difficult to achieve all the targeted operational performances such as low power consumption and high selectivity. MXenes are a type of graphene-like emergent material equipped with abundant surface sites benefiting gas-sensing applications. In the work, we discuss the sensing performance of Ti3C2O2 to anticipate harmful and polluting NH3 gases by density functional theory and nonequilibrium Green's function. The adsorption geometry, charge difference density, and partial density of states are discussed to understand the nature of interactions between gas molecules and Ti3C2O2. The theoretical results show that only NH3 adsorbs onto the nanosheet through chemisorption. Then, a two-electrode Ti3C2O2-based gas sensor device is built to unravel the transport properties. Current under different bias voltages indicates the Ti3C2O2-based sensor could maintain extremely high sensitivity, demonstrating that Ti3C2O2 has great potential for the NH3 sensor with high selectivity, excellent sensitivity, and low energy consumption. Upon external electric fields, the adsorption energy and charge transfer can be tuned effectively, suggesting that Ti3C2O2 is a versatile agent as an ammonia-sensing material.

19.
Adv Sci (Weinh) ; 10(8): e2206437, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646499

ABSTRACT

The last 20 years have seen many publications investigating porous solids for gas adsorption and separation. The abundance of adsorbent materials (this work identifies 1608 materials for CO2 /N2 separation alone) provides a challenge to obtaining a comprehensive view of the field, identifying leading design strategies, and selecting materials for process modeling. In 2021, the empirical bound visualization technique was applied, analogous to the Robeson upper bound from membrane science, to alkane/alkene adsorbents. These bound visualizations reveal that adsorbent materials are limited by design trade-offs between capacity, selectivity, and heat of adsorption. The current work applies the bound visualization to adsorbents for a wider range of gas pairs, including CO2 , N2 , CH4 , H2 , Xe, O2 , and Kr. How this visual tool can identify leading materials and place new material discoveries in the context of the wider field is presented. The most promising current strategies for breaking design trade-offs are discussed, along with reproducibility of published adsorption literature, and the limitations of bound visualizations. It is hoped that this work inspires new materials that push the bounds of traditional trade-offs while also considering practical aspects critical to the use of materials on an industrial scale such as cost, stability, and sustainability.

20.
Adv Sci (Weinh) ; 10(8): e2206786, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646512

ABSTRACT

The electrocatalysts are widely applied in lithium-sulfur (Li-S) batteries to selectively accelerate the redox kinetics behavior of Li2 S, in which bifunctional active sites are established, thereby improving the electrochemical performance of the battery. Considering that the Li-S battery is a complex closed "black box" system, the internal redox reaction routes and active sites cannot be directly observed and monitored especially due to the distribution of potential active-site structures and their dynamic reconstruction. Empirical evidence demonstrates that traditional electrochemical test methods and theoretical calculations only probe the net result of multi-factors on an average and whole scale. Herein, based on the amorphous TiO2- x @Ni selective bifunctional model catalyst, these limitations are overcome by developing a system that couples the light field and in situ irradiated X-ray photoelectron spectroscopy to synergistically convert the "black box" battery into a "see-through" battery for direct observation of the charge transportation, thus revealing that amorphous TiO2- x and Ni nanoparticle as the oxidation and reduction sites selectively promote the decomposition and nucleation of Li2 S, respectively. This work provides a universal method to achieve a deeper mechanistic understanding of bidirectional sulfur electrochemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...