Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Small ; 20(16): e2307483, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38150612

ABSTRACT

The key to design an advanced oxygen reduction reaction (ORR) electrocatalyst is a well-balance between the adsorption and desorption of oxygen intermediates. This study systematically evaluated the ORR activity of HCP and FCC cobalt core-shell cobalt/N-doped carbon (Cobalt@NC) catalyst via theoretical and experimental studies. The electronic structure calculations using density functional theory (DFT) calculations revealed that the ORR activity of carbon layer can be improved by 1) switching the electrostatic potential in the electrical double layer due to the polarization induced at the carbon-cobalt interface and 2) modulating the electron population in the bonding orbital in the C-O bonds in an ORR. The results revealed that an O atom is bounded stronger to the outer NC shell with FCC Cobalt than HCP Cobalt, which hindered the desorption steps of OH*. Experimentally, plasma-engineered HCP Cobalt@NC also showed remarkably advanced performance toward ORR compared to that FCC Cobalt@NC. The kinetic current density of HCP Cobalt@NC at 0.85 V versus RHE is calculated as 6.24 mA cm-2, which is six folds higher than FCC Cobalt@NC and even outperform 20 wt.% Pt/C. In a practical Aluminium-air battery, HCP Cobalt@NC also exhibited slightly higher peak power density (110.57 mW cm-2) compared to 20 wt.% Pt/C.

2.
ACS Appl Mater Interfaces ; 15(40): 46829-46839, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37756659

ABSTRACT

Noble metals (Pt) and metal oxides (IrC and RuO2) are heavily utilized as benchmark electrocatalysts for alkaline water splitting; however, these materials possess several drawbacks including high cost, poor selectivity and stability, and high environmental impact. To address these issues, we synthesized a novel metal-free conducting polypyrrole-polythiophene (Ppy-Ptp) copolymer and a separate Ppy electrode material for water-splitting applications. The Ppy-Ptp and Ppy electrocatalysts exhibited remarkable activity in the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. The optimal Ppy-Ptp (1:3) formulation, when deposited on a conductive nickel foam (NF) substrate, exhibited an exceptional OER performance with a low overpotential of approximately 250 mV at 20 mAcm-2, thereby outperforming the benchmark IrC/NF electrocatalyst (290 mV, 20 mAcm-2). Additionally, a similarly prepared Ppy/NF electrocatalyst exhibited an extraordinary HER performance with an overpotential of approximately 72 mV at 10 mA cm-2. Furthermore, an alkaline anion-exchange membrane (AEM) electrolyzer incorporating Ppy-Ptp (1:3) and Ppy as the anode and cathode materials, respectively, displayed operating potentials of 1.55, 1.70, and 1.78 V at 10, 50, and 100 mA cm-2, which are lower than those observed in previously reported electrolyzers. This electrolyzer also exhibited considerable operational endurance over 50 h at 50 mA cm-2, over which a negligible decay of 0.02 V was observed. The novel polymer-based metal-free catalysts presented herein therefore exhibit considerable potential as alternative electrocatalytic materials for sustainable industrial-scale H2 synthesis.

3.
Nano Converg ; 10(1): 38, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615807

ABSTRACT

In recent years, low-temperature plasma-assisted processes, featuring high reaction efficiency and wide application scope, have emerged as a promising alternative to conventional methods for biomass valorization. It is well established that charged species, chemically energetic molecules and radicals, and highly active photons playing key roles during processing. This review presents the major applications of low-temperature plasma for biomass conversion in terms of (i) pretreatment of biomass, (ii) chemo fractionation of biomass into value-added chemicals, and (iii) synthesis of heterogeneous catalyst for further chemo-catalytic conversion. The pretreatment of biomass is the first and foremost step for biomass upgrading to facilitate raw biomass transformation, which reduces the crystallinity, purification, and delignification. The chemo-catalytic conversion of biomass involves primary reactions to various kinds of target products, such as hydrolysis, hydrogenation, retro-aldol condensation and so on. Finally, recent researches on plasma-assisted chemo-catalysis as well as heterogeneous catalysts fabricated via low-temperature plasma at relatively mild condition were introduced. These catalysts were reported with comparable performance for biomass conversion to other state-of-the-art catalysts prepared using conventional methods.

4.
ACS Appl Mater Interfaces ; 15(30): 36748-36758, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37467137

ABSTRACT

Solid-state batteries (SSBs) have emerged as a promising alternative to conventional liquid electrolyte batteries due to their potential for higher energy density and improved safety. However, achieving high performance in SSBs is difficult because of inadequate contact and interfacial reactions that generate high interfacial resistance, as well as inadequate solid-solid contact between electrodes. These chronic issues are associated with inhomogeneous ion and electron transport networks owing to imperfect solid-solid interfacial contact. This study developed an optimal interfacial engineering strategy to facilitate an ion-electron transport network by designing an active material (NCM622) uniformly filled with a thin layer of a solid electrolyte (garnet-type Li6.25Ga0.25La3Zr2O12) and conductive additives. The optimal composite electrode architecture enhanced the high capacity, high rate capability, and long-term cycle stability, even at room temperature, owing to the percolating network for facile ionic conduction that assured a homogeneous reaction. In addition to mitigating the mechanical degradation of the cathode electrode, it also reduced the crosstalk effects on the anode-solid electrolyte interface. Effectively optimizing the selection and use of conductive additives in composite electrodes offers a promising approach to addressing key performance-limiting factors in SSBs, including interfacial resistance and solid-solid contact issues. This study underscores the critical importance of cathode architecture design for achieving high-performance SSBs by ensuring that the interfaces are intact with solid electrolytes at both the cathode and anode interfaces while promoting uniform reactions. This study provides valuable insights into the development of SSBs with improved performance, which could have significant implications for a wide range of applications.

5.
Nanomicro Lett ; 13(1): 60, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-34138279

ABSTRACT

As bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen-carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g., well-dispersed single-atom-doped M-N4/NCs) often requires numerous steps and tedious processes. Herein, ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline. When combining with the dispersion effect of ultrasonic waves, we successfully fabricated uniform single-atom M-N4 (M = Fe, Co) carbon catalysts with a production rate as high as 10 mg min-1. The Co-N4/NC presented a bifunctional potential drop of ΔE = 0.79 V, outperforming the benchmark Pt/C-Ru/C catalyst (ΔE = 0.88 V) at the same catalyst loading. Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption-desorption mechanisms. In a practical Zn-air battery test, the air electrode coated with Co-N4/NC exhibited a specific capacity (762.8 mAh g-1) and power density (101.62 mW cm-2), exceeding those of Pt/C-Ru/C (700.8 mAh g-1 and 89.16 mW cm-2, respectively) at the same catalyst loading. Moreover, for Co-N4/NC, the potential difference increased from 1.16 to 1.47 V after 100 charge-discharge cycles. The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal-air batteries.

6.
J Colloid Interface Sci ; 582(Pt B): 977-990, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32927178

ABSTRACT

Low-cost, high-activity, non-precious metal electrocatalysts are needed to enhance the bifunctional oxygen activities of rechargeable Zn-Air batteries. In this study, a Fe-enriched FeNi3 inter-metallic nanoparticle/nitrogen-doped carbon (Fe-enriched-FeNi3/NC) electrocatalyst was designed and prepared using a facile method based on plasma engineering. The excess Fe-ions in the Fe-enriched FeNi3 nanoparticles led to a high degree of lattice distortion that produced abundant oxygen-active sites. The electrocatalyst exhibited excellent oxygen evolution reaction (OER) activity as well as favorable oxygen reduction reaction (ORR) activity in an alkaline electrolyte. In addition, the electrocatalyst revealed a lower potential difference (ΔE = 0.80 V vs. RHE) in a bifunctional oxygen reaction compared to that of the benchmark 20 wt% Pt/C + Ir/C (ΔE = 0.84 V vs. RHE), and most of the reported FeNi3 alloy-doped carbon catalysts. Based on DFT calculations, the lattice distortion in Fe-enriched-FeNi3/NC promoted a higher density of active electrons around the Fermi level. Owing to its great bifunctional oxygen activities, Fe-enriched FeNi3/NC was applied as an ORR/OER catalyst in the air cathode in a homemade zinc-air battery and exhibited an excellent discharge-charge voltage gap (0.89 V), peak power density (89 mW/cm2), and high specific capacity of 734 mAh/g at 20 mA/cm2, which outperformed the benchmark 20 wt% Pt/C + Ir/C electrocatalyst. In summary, this research provides a novel strategy to enhance the OER/ORR activities of transition metal-based alloys through lattice distortion defects. In addition, it provides a new pathway for achieving noble metal-free air cathode materials for the next generation Zn-air battery.

7.
ChemSusChem ; 14(5): 1324-1335, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33381900

ABSTRACT

Tungsten-doped Ni-Fe hydroxides fabricated on a three-dimensional nickel foam through cathodic electrodeposition are proposed as effective oxygen evolution reaction (OER) catalysts for alkaline water oxidation. Incorporating an adequate amount of W into Ni-Fe hydroxides modulates the electronic structure by changing the local environment of Ni and Fe and create oxygen vacancies, resulting in abundant active sites for the OER. The optimized electrocatalyst, with a substantial number of catalytic sites, is found to outperform the well-established 20 wt% Ir/C electrocatalyst. The catalyst only requires small overpotentials of 224 mV and 251 mV to generate current densities of 10 mA cm-2 and 50 mA cm-2 , respectively, at an extremely low Tafel slope. Surface study after long-term chronopotentiometry (ca. 30 h) reveals that the tungsten dopant undergoes reduction to stabilize the Ni and Fe active sites for predominant water oxidation. This research provides new insight to apply optimum amounts of tungsten doping to enable more significant electronic coupling within Ni-Fe for the chemisorption of hydroxy and oxygen intermediates and greatly improved OER activity.

8.
Nanomaterials (Basel) ; 10(2)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32013025

ABSTRACT

Metal-air batteries and fuel cells have attracted much attention as powerful candidates for a renewable energy conversion system for the last few decades. However, the high cost and low durability of platinum-based catalysts used to enhance sluggish oxygen reduction reaction (ORR) at air electrodes prevents its wide application to industry. In this work, we applied a plasma process to synthesize cobalt nanoparticles catalysts on nitrogen-doped carbon support with controllable quaternary-N and amino-N structure. In the electrochemical test, the quaternary-N and amino-N-doped carbon (Q-A)/Co catalyst with dominant quaternary-N and amino-N showed the best onset potential (0.87 V vs. RHE) and highest limiting current density (-6.39 mA/cm2). Moreover, Q-A/Co was employed as the air catalyst of a primary zinc-air battery with comparable peak power density to a commercial 20 wt.% Pt/C catalyst with the same loading, as well as a stable galvanostatic discharge at -20 mA/cm2 for over 30,000 s. With this result, we proposed the synergetic effect of transitional metal nanoparticles with controllable nitrogen-bonding can improve the catalytic activity of the catalyst, which provides a new strategy to develop a Pt-free ORR electrocatalyst.

9.
J Colloid Interface Sci ; 566: 224-233, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32006818

ABSTRACT

Developing cost-effective and efficient oxygen evolution reaction (OER) electrocatalyst is highly essential for energy-conversion technologies. A self-assembled NiFe-layered double hydroxide (LDH)@MnCO3 heterostructure prepared on Ni foam using a successive hydrothermal strategy shows notable catalytic activity toward the OER with a small overpotential of 275 mV to drive a geometrical current density of 10 mA cm-2 under alkaline conditions with remarkable stability for 15 h, outperforming IrO2/C electrocatalyst (350 mV@10 mA cm-2). The hierarchical NiFe-LDH@MnCO3 heterostructure possess more exposed active sites, enhanced conductivity and superior interfacial coupling effect makes them an ideal candidate for OER electrocatalyst.

10.
Sci Rep ; 9(1): 12704, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31481710

ABSTRACT

The metal-air battery is a form of renewable energy generation technology that produces energy electrochemically and can address energy concerns in the near future. However, state-of-the-art Pt electrocatalysts often suffer from agglomeration or detachment from carbon supports under prolonged operation, eventually limiting the long-term utilization of metal-air batteries. In this work, Pt nanoparticles were deposited on sulfur-doped nanocarbon to increase its stability. We first synthesized sulfur-doped (S-doped) and pristine carbon as support materials via a plasma process, and thereafter loaded platinum (Pt) nanoparticles onto the S-doped and pristine carbon matrix. From a sintering test at 600 °C, the Pt nanoparticles supported on pristine carbon increased from 2.4 to 5.2 nm; meanwhile, the average size of Pt NPs supported on S-doped carbon only increased from 2.2 to 2.51 nm. From the electrochemical analyses, the mass activity of Pt on pristine and S-doped carbon supports decreased by 25% and 10%, respectively, after 1500 cycles. The results proposed that the sulfide C-S-C bond provided a strong platinum-S-doped carbon support interaction between the support materials and the loaded Pt nanoparticles. Thus, S-doped carbon supports can serve as a stabilizer of Pt nanoparticles to enhance their durability in the application of metal-air batteries and other electrochemical devices.

11.
Nanomaterials (Basel) ; 9(5)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091814

ABSTRACT

Metal-air batteries are attracting increasing attention as a superior renewable energy conversion device due to their high performance and strong potential. However, the high cost and low stability of the current Pt catalyst is the main obstacle preventing wide industrial application. In this work, we applied a plasma process to fabricate aniline and a transition metals electrode (Fe, Co, Ni) as the carbon-nitrogen and the metal nanoparticle (NP) precursors, respectively, for selective metal/amino-N-doped carbon catalysts. All three as-synthesized catalysts exhibited dominant amino-N as the major C-N bonding state. In electrochemical testing, Co/amino-N-doped carbon showed positive E1/2 potential (0.83 V vs. Reversible Hydrogen Electrode (RHE)). In addition, the calculated electron transfer number (n) of Co/amino-N-doped carbon at 0.5 V vs. RHE was 3.81, which was only slightly less than that of commercial Pt/C (3.97). This superior performance of transition metal/amino-N-doped carbon promotes it as an economical oxygen reduction reaction (ORR) electrocatalyst to replace expensive Pt/C in metal-air batteries.

12.
Phys Chem Chem Phys ; 18(31): 21843-51, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27435811

ABSTRACT

Halogen-doped carbon nanoparticles (CNPs) were synthesized by a simple one-step solution plasma process at room temperature using a mixture of benzene (C6H6) and organics containing halogen atoms as the precursors (i.e., hexafluorobenzene (C6F6), hexachlorobenzene (C6Cl6), and hexabromobenzene (C6Br6)). The experimental results demonstrated that halogen doping, especially F and Cl, could lead to more efficient removal of residual hydrogen compared to carbon synthesized with pure benzene. This phenomenon was related to the different binding energies between hydrogen and halogens to form hydrogen halides. Their crystallinity and morphology did not change and remained the same as non-doped carbon. The electrochemical evaluation of oxygen reduction reaction (ORR) activity in an alkaline solution revealed that halogen doping did not play a significant role in shifting the onset potential for the ORR, while a slight enhancement in diffusion limited current density was observed at high overpotentials. Moreover, the electron transfer number involved in the ORR process determined from the Koutecky-Levich plot at -0.6 V was found to increase for halogen-doped carbons in the following order: F-CNPs > Br-CNPs > Cl-CNPs > CNPs. The improved ORR performance of F-CNPs could reasonably be attributed to the synergistic effects of specific bonding states between the halogen and carbon, structural defects and surface functional groups. Our results confirmed the validity of using halogen doping to improve the ORR catalytic activity of CNPs.

13.
Phys Chem Chem Phys ; 18(16): 10856-63, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27055883

ABSTRACT

Heterocarbon nanosheets incorporating iron phthalocyanine (FP-NCNs-SP) have been successfully synthesized by a facile one-pot solution plasma process at high repetition frequency. It was found that the Fe-N4 catalytic active sites could be preserved on the FP-NCNs-SP without degradation. The FP-NCNs-SP also possessed large surface area, good conductivity and high degree of graphitization. Electrochemical evaluations demonstrated that NCNs-SP had excellent electrocatalytic activity and selectivity toward oxygen reduction reaction (ORR) in alkaline medium through a direct four-electron pathway. Although the significant improvement in ORR activity was clearly observed in acidic medium, it was much poorer than in alkaline medium. We believe that the results presented in this work will shed light on the advanced synthesis and design of ORR electrocatalysts at room temperature with an abundance of catalytically active sites and high ORR performance.

14.
Colloids Surf B Biointerfaces ; 136: 1-6, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26355811

ABSTRACT

The extraction of DNA is the most crucial method used in molecular biology. Up to date silica matrices has been widely applied as solid support for selective DNA adsorption and extraction. However, since adsorption force of SiOH functional groups is much greater than that of desorption force, the DNA extraction efficiency of silica surfaces is limited. In order to increase the DNA extraction yield, a new surface with different functional groups which possess of greater desorption property is required. In this study, we proposed cellulose/graphite oxide (GO) composite as an alternative material for DNA adsorption and extraction. GO/Cellulose composite provides the major adsorption and desorption of DNA by COH, which belongs to alkyl or phenol type of OH functional group. Compared to SiOH, COH is less polarized and reactive, therefore the composite might provide a higher desorption of DNA during the elution process. The GO/cellulose composite were prepared in spherical structure by mixing urea, cellulose, NaOH, Graphite oxide and water. The concentration of GO within the composites were controlled to be 0-4.15 wt.%. The extraction yield of DNA increased with increasing weight percentage of GO. The highest yield was achieved at 4.15 wt.% GO, where the extraction efficiency was reported as 660.4 ng/µl when applying 2M GuHCl as the binding buffer. The absorbance ratios between 260 nm and 280 nm (A260/A280) of the DNA elution was demonstrated as 1.86, indicating the extracted DNA consisted of high purity. The results proved that GO/cellulose composite provides a simple method for selective DNA extraction with high extraction efficiency of pure DNA.


Subject(s)
DNA/chemistry , Graphite/chemistry , Adsorption , Cellulose/chemistry , Microscopy, Electron, Scanning , Oxides/chemistry
15.
Phys Chem Chem Phys ; 17(1): 407-13, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25406572

ABSTRACT

Heteroatom-doped carbon matrices have been attracting significant attention due to their superior electrochemical stability, light weight and low cost. Hence, in this study, various types of heteroatom, including single dopants of N, B and P and multiple dopants of B-N and P-N with a carbon matrix were synthesized by an innovative method named the solution plasma process. The heteroatom was doped into the carbon matrix during the discharge process by continuous dissociation and recombination of precursors. The chemical bonding structure, ORR activity and electrochemical performance were compared in detail for each single dopant and multiple dopants. According to the Raman spectra, the carbon structures were deformed by the doped heteroatoms in the carbon matrix. In comparison with N-doped structures (NCNS), the ORR potential of PN-doped structures (PNCNS) was positively shifted from -0.27 V to -0.24 V. It was observed that doping with N decreased the bonding between P and C in the matrix. The multiple doping induced additional active sites for ORR which further enhanced ORR activity and stability. Therefore, PNCNS is a promising metal-free catalyst for ORR at the cathode in a fuel cell.

16.
Phys Chem Chem Phys ; 16(28): 14905-11, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24931058

ABSTRACT

In the present work, we demonstrated the significance of a central transition metal, Fe, in a N4-macrocycle for the enhancement of ORR activity and other electrochemical properties. The catalysts were synthesized by a solution plasma process. Fe-phthalocyanine/benzene and phthalocyanine/benzene were chosen as the precursors of Fe-phthalocyanine based mesoporous carbon (FP-MCS) and phthalocyanine based mesoporous carbon (P-MCS) catalysts, respectively. The existence of Fe-N4 and N4 macrocyclic structures was confirmed by X-ray photoelectron spectroscopy. From the chemical bonding structure, FP-MCS demonstrated that the Me-N peaks increased as the amount of iron-phthalocyanine introduced in the experiment increased. The dominant active site was shifted from pyridinic nitrogen to Me-N when iron-phthalocyanine was present. The analysis of Tof-SIMS indicated that the relative intensity of FeN4Cy(+) ions was approximately 50% of the total amount of ionized species of ∑FeNxCy(+). Both XPS and Tof-SIMS results confirmed that the Fe-N4 site was the most favourable structure in the matrix. From CV measurements, the cathodic peak current corresponding to ORR activity slightly shifted from -0.19 V to -0.17 V when the active site changed from N4 to Fe-N4 macrocyclic structure. The current density increased more than 30% in the presence of iron. Based on the calculation of Koutecky-Levich plots, the electron transfer numbers for ORR reaction in P- and FP-MCSs were 3.25 and 3.98, respectively. These results clearly demonstrated that the presence of a Fe central ion in the N4-macrocyclic structure significantly enhanced the ORR and charge transfer number in ORR activities.

17.
Nanoscale ; 5(15): 6874-82, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23783397

ABSTRACT

High-electrocatalytic-activity noble nanoparticles (NPs) supported on carbon nanoballs (CNBs) were synthesized using an innovative plasma-in-liquid method, which is known as solution plasma processing (SPP). This technique uses a one-step method for the synthesis of NPs on carbon materials. CNBs are formed using benzene as a carbon precursor while gold (Au) or platinum (Pt) nanoparticles are generated instantaneously via sputtering from metal electrodes. The synthesized NP/CNBs were annealed at 850 °C in order to increase the conductivity of the material. The results of structural characterizations reveal that the Au and Pt NPs are smaller than 10 nm and have a uniform size distribution, and these NPs are successfully loaded onto highly mesoporous CNBs that have an average pore diameter between 13 and 16 nm. In the results from cyclic voltammetry measurements, the Au/CNBs and Pt/CNBs show clear peaks corresponding to the oxidation and reduction features in the catalytic reactions. Apart from noble nanoparticles, SPP can also be used to synthesize various kinds of NPs including bimetallic NPs loaded on spherical carbon supports by changing the working electrodes. The proposed mechanism for the synthesis is discussed in detail. This method shows potential to be a candidate for the next-generation synthesis of NP/carbon in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...