Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.398
Filter
1.
Stem Cell Res ; 77: 103441, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38759410

ABSTRACT

Spinocerebellar ataxia type 12 (SCA12) is caused by a CAG expansion mutation in PPP2R2B, a gene encoding brain-specific regulatory units of protein phosphatase 2A (PP2A); while normal alleles carry 4 to 31 triplets, the disease alleles carry 43 to 78 triplets. Here, by CRISPR/Cas9n genome editing, we have generated a human heterozygous SCA12 iPSC line with 73 triplets for the mutant allele. The heterozygous SCA12 iPSCs have normal karyotype, express pluripotency markers and are able to differentiate into the three germ layers.

2.
Plants (Basel) ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732386

ABSTRACT

Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.

3.
Front Oncol ; 14: 1329279, 2024.
Article in English | MEDLINE | ID: mdl-38737911

ABSTRACT

Secondary acute lymphoblastic leukemia (s-ALL) refers to acute lymphoblastic leukemia that occurs after a previous malignant tumor, including therapy-related acute lymphoblastic leukemia (t-ALL) and prior malignant tumor acute lymphoblastic leukemia (pm-ALL). We report a case of a 51-year-old female patient who developed acute lymphoblastic leukemia 14 years after being diagnosed with diffuse large B-cell lymphoma (DLBCL). The patient was unresponsive to conventional chemotherapy for acute lymphoblastic leukemia (ALL) and achieved remission with a combination of sorafenib and decitabine based on the molecular biology characteristics of her B-ALL.

4.
Biomater Res ; 28: 0028, 2024.
Article in English | MEDLINE | ID: mdl-38715912

ABSTRACT

The field of immunotherapy, particularly immune checkpoint blockade (ICB), holds immense potential in mitigating the progression of cancer. However, the challenges of insufficient tumor antigen production and the immunosuppressive state in the tumor microenvironment substantially impede patients from deriving benefits. In this research, we present a tumor-microenvironment-modulation manganese-based nanosystem, PEG-MnMOF@PTX, aiming to improve the responsiveness of ICB. Under acidic conditions, the released Mn2+ accomplishes multiple objectives. It generates toxic hydroxyl radicals (•OH), together with the released paclitaxel (PTX), inducing immunogenic cell death of tumor cells and normalizing tumor blood vessels. Concurrently, it facilitates the in situ generation of oxygen (O2) from hydrogen peroxide (H2O2), ameliorating the microenvironmental immunosuppression and increasing the efficacy of immunotherapy. In addition, this study demonstrates that PEG-MnMOF@PTX can promote the maturation of dendritic cells and augment the infiltration of cytotoxic T lymphocytes through activation of the cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and interferon gene stimulator (STING) pathways, namely cGAS-STING pathways, thereby heightening the sensitivity to ICB immunotherapy. The findings of this study present a novel paradigm for the progress in cancer immunotherapy.

5.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738888

ABSTRACT

The protocol presented here demonstrates the operation method of ultrasound-guided acupotomy for knee osteoarthritis (KOA), including patient recruitment, preoperative preparation, manual operation, and postoperative care. The purpose of this protocol is to relieve pain and improve knee function in patients with KOA. A total of 60 patients with KOA admitted between June 2022 and June 2023 were treated with ultrasound-guided acupotomy. Pathological changes and knee function scores were compared before and after the treatment. After 1 week of treatment, the synovial thickness of the suprapatellar bursae was significantly lesser than before treatment (p < 0.05), the Hospital for Special Surgery Knee Score (HSS) was significantly higher than before treatment (p < 0.05), the Visual analogue scale (VAS) was significantly lower than those of the control group (p < 0.05) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were significantly lower than those of the control group (p < 0.05). Therefore, ultrasound-guided acupotomy for the treatment of KOA can reduce synovial thickness, relieve pain, improve knee joint function, and have a remarkable curative effect.


Subject(s)
Acupuncture Therapy , Osteoarthritis, Knee , Ultrasonography, Interventional , Humans , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/surgery , Acupuncture Therapy/methods , Ultrasonography, Interventional/methods , Female , Middle Aged , Male , Aged
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124295, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38703407

ABSTRACT

Surface-enhanced Raman Spectroscopy (SERS) is extensively implemented in drug detection due to its sensitivity and non-destructive nature. Deep learning methods, which are represented by convolutional neural network (CNN), have been widely applied in identifying the spectra from SERS for powerful learning ability. However, the local receptive field of CNN limits the feature extraction of sequential spectra for suppressing the analysis results. In this study, a hybrid Transformer network, TMNet, was developed to identify SERS spectra by integrating the Transformer encoder and the multi-layer perceptron. The Transformer encoder can obtain precise feature representations of sequential spectra with the aid of self-attention, and the multi-layer perceptron efficiently transforms the representations to the final identification results. TMNet performed excellently, with identification accuracies of 99.07% for the spectra of hair containing drugs and 97.12% for those of urine containing drugs. For the spectra with additive white Gaussian, baseline background, and mixed noises, TMNet still exhibited the best performance among all the methods. Overall, the proposed method can accurately identify SERS spectra with outstanding noise resistance and excellent generalization and holds great potential for the analysis of other spectroscopy data.

7.
Med Eng Phys ; 127: 104166, 2024 May.
Article in English | MEDLINE | ID: mdl-38692765

ABSTRACT

A profound investigation of the interaction mechanics between blood vessels and guidewires is necessary to achieve safe intervention. An interactive force model between guidewires and blood vessels is established based on cardiovascular fluid dynamics theory and contact mechanics, considering two intervention phases (straight intervention and contact intervention at a corner named "J-vessel"). The contributing factors of the force model, including intervention conditions, guidewire characteristics, and intravascular environment, are analyzed. A series of experiments were performed to validate the availability of the interactive force model and explore the effects of influential factors on intervention force. The intervention force data were collected using a 2-DOF mechanical testing system instrumented with a force sensor. The guidewire diameter and material were found to significantly impact the intervention force. Additionally, the intervention force was influenced by factors such as blood viscosity, blood vessel wall thickness, blood flow velocity, as well as the interventional velocity and interventional mode. The experiment of the intervention in a coronary artery physical vascular model confirms the practicality validation of the predicted force model and can provide an optimized interventional strategy for vascular interventional surgery. The enhanced intervention strategy has resulted in a considerable reduction of approximately 21.97 % in the force exerted on blood vessels, effectively minimizing the potential for complications associated with the interventional surgery.


Subject(s)
Mechanical Phenomena , Blood Vessels/physiology , Models, Cardiovascular , Hydrodynamics , Humans , Biomechanical Phenomena , Models, Biological , Coronary Vessels/physiology
8.
Sci Rep ; 14(1): 11026, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744903

ABSTRACT

Currently, the relationship between household size and incident dementia, along with the underlying neurobiological mechanisms, remains unclear. This prospective cohort study was based on UK Biobank participants aged ≥ 50 years without a history of dementia. The linear and non-linear longitudinal association was assessed using Cox proportional hazards regression and restricted cubic spline models. Additionally, the potential mechanisms driven by brain structures were investigated by linear regression models. We included 275,629 participants (mean age at baseline 60.45 years [SD 5.39]). Over a mean follow-up of 9.5 years, 6031 individuals developed all-cause dementia. Multivariable analyses revealed that smaller household size was associated with an increased risk of all-cause dementia (HR, 1.06; 95% CI 1.02-1.09), vascular dementia (HR, 1.08; 95% CI 1.01-1.15), and non-Alzheimer's disease non-vascular dementia (HR, 1.09; 95% CI 1.03-1.14). No significant association was observed for Alzheimer's disease. Restricted cubic splines demonstrated a reversed J-shaped relationship between household size and all-cause and cause-specific dementia. Additionally, substantial associations existed between household size and brain structures. Our findings suggest that small household size is a risk factor for dementia. Additionally, brain structural differences related to household size support these associations. Household size may thus be a potential modifiable risk factor for dementia.


Subject(s)
Biological Specimen Banks , Dementia , Family Characteristics , Humans , Female , Male , United Kingdom/epidemiology , Dementia/epidemiology , Dementia/etiology , Middle Aged , Aged , Risk Factors , Prospective Studies , Incidence , Proportional Hazards Models , Brain/pathology , UK Biobank
9.
Mol Phylogenet Evol ; 197: 108093, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740145

ABSTRACT

Mulberries (genus Morus), belonging to the order Rosales, family Moraceae, are important woody plants due to their economic values in sericulture, as well as for nutritional benefits and medicinal values. However, the taxonomy and phylogeny of Morus, especially for the Asian species, remains challenging due to its wide geographical distribution, morphological plasticity, and interspecific hybridization. To better understand the evolutionary history of Morus, we combined plastomes and a large-scale nuclear gene analyses to investigate their phylogenetic relationships. We assembled the plastomes and screened 211 single-copy nuclear genes from 13 Morus species and related taxa. The plastomes of Morus species were relatively conserved in terms of genome size, gene content, synteny, IR boundary and codon usage. Using nuclear data, our results elucidated identical topologies based on coalescent and concatenation methods. The genus Morus was supported as monophyletic, with M. notabilis as the first diverging lineage and the two North American Morus species, M. microphylla and M. rubra, as sister to the other Asian species. In the Asian Morus species, interspecific relationships were completely resolved. However, cyto-nuclear discordances and gene tree-species tree conflicts were detected in the phylogenies of Morus, with multiple evidences supporting hybridization/introgression as the main cause of discordances between nuclear and plastid phylogenies, while gene tree-species tree conflicts were mainly caused by ILS.

10.
Int J Biol Macromol ; 269(Pt 1): 131966, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697422

ABSTRACT

JAK2/STAT3/MYC axis is dysregulated in nearly 70 % of human cancers, but targeting this pathway therapeutically remains a big challenge in cancer therapy. In this study, genes associated with JAK2, STAT3, and MYC were analyzed, and potential target genes were selected. Leucine-rich PPR motif-containing protein (LRPPRC) whose function and regulation are not fully understood, emerged as one of top 3 genes in terms of RNA epigenetic modification. Here, we demonstrate LRPPRC may be an independent prognostic indicator besides JAK2, STAT3, and MYC. Mechanistically, LRPPRC impairs N6-methyladenosine (m6A) modification of JAK2, STAT3, and MYC to facilitate nuclear mRNA export and expression. Meanwhile, excess LRPPRC act as a scaffold protein binding to JAK2 and STAT3 to enhance stability of JAK2-STAT3 complex, thereby facilitating JAK2/STAT3/MYC axis activation to promote esophageal squamous cell carcinoma (ESCC) progression. Furthermore, 5,7,4'-trimethoxyflavone was verified to bind to LRPPRC, STAT3, and CDK1, dissociating LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 interaction, leading to impaired tumorigenesis in 4-Nitroquinoline N-oxide induced ESCC mouse models and suppressed tumor growth in ESCC patient derived xenograft mouse models. In summary, this study suggests regulation of m6A modification by LRPPRC, and identifies a novel triplex target compound, suggesting that targeting LRPPRC-mediated JAK2/STAT3/MYC axis may overcome JAK2/STAT3/MYC dependent tumor therapeutic dilemma.

11.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38743572

ABSTRACT

To enhance the accuracy of phase measurement and to prevent tracking errors, it is crucial to effectively read the multi-frequency signal in space gravitational wave detection. In this paper, a novel signal acquisition method called the multi-frequency acquisition algorithm is proposed and implemented. Different from the traditional single-frequency acquisition, the signal characteristics of amplitude and frequency are both considered to better distinguish different frequency components. A phasemeter integrated with the acquisition method and narrow-bandwidth digital phase-locked loop is constructed for the method test and verification. The results show that the multi-frequency acquisition unit can capture all the frequencies of an input signal in several milliseconds. The precision is better than ±200 Hz under a low SNR (signal-to-noise ratio) of 0 dB. The phase noise can reach 2 µrad/Hz1/2 in the frequency range of 0.1-1 Hz and satisfy the requirement of the space gravitational wave detection in all frequency ranges.

12.
Mol Ecol ; : e17380, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745400

ABSTRACT

In order to thrive and survive, plant species need to combine stability in the long term and rapid response to environmental challenges in the short term. The former would be reflected by parallel or convergent adaptation across species, and the latter by pronounced local adaptation among populations of the same species. In the present study, we generated a high-quality genome and re-sequenced 177 individuals for Gymnocarpos przewalskii, an important desert plant species from North-West China, to detect local adaptation. We first focus on ancient adaptation to aridity at the molecular level by comparing the genomic data of 15 species that vary in their ability to withstand aridity. We found that a total of 118 genes were shared across xerophytic species but absent from non-xerophytic species. Of the 65 found in G. przewalskii, 63 were under purifying selection and two under positive selection. We then focused on local adaptation. Up to 20% of the G. przewalskii genome showed signatures of local adaptation to aridity during population divergence. Thirteen of the selected shared xerophytic genes were reused in local adaptation after population differentiation. Hence, only about 20% of the genes shared and specific to xerophytic species and associated with adaptation to aridity were later recruited for local adaptation in G. przewalskii.

13.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599785

ABSTRACT

To develop aryloxyphenoxypropionate herbicides with a novel structure and improved activity, a total of 39 aryloxyphenoxypropionate/amide derivatives containing quinazolinone moiety were synthesized and further bioevaluated. The bioassay results in the greenhouse showed that most of the target compounds had good herbicidal activity under postemergence conditions, of which, QPP-I-6 displayed excellent herbicidal activity against Echinochloa crusgalli, Digitaria sanguinalis, Spartina alterniflora, Eleusine indica, and Pennisetum alopecuroides with inhibition rates >90% at a dosage of 187.5 g ha-1. More importantly, QPP-I-6 displayed higher crop safety to Gossypium hirsutum, Glycine max, and Arachis hypogaea than the commercial herbicide quizalofop-p-ethyl. Studying the molecular mode of action by phenotypic observation, membrane permeability evaluation, transcriptomic analysis, and in vivo ACCase activity evaluation reveals that QPP-I-6 is a novel ACCase inhibitor. The present work demonstrates that QPP-I-6 can serve as a lead compound for further developing novel ACCase-inhibiting herbicides.

14.
World J Gastroenterol ; 30(12): 1751-1763, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38617736

ABSTRACT

BACKGROUND: Thiopurine-induced leucopenia significantly hinders the wide application of thiopurines. Dose optimization guided by nudix hydrolase 15 (NUDT15) has significantly reduced the early leucopenia rate, but there are no definitive biomarkers for late risk leucopenia prediction. AIM: To determine the predictive value of early monitoring of DNA-thioguanine (DNATG) or 6-thioguanine nucleotides (6TGN) for late leucopenia under a NUDT15-guided thiopurine dosing strategy in patients with Crohn's disease (CD). METHODS: Blood samples were collected within two months after thiopurine initiation for detection of metabolite concentrations. Late leucopenia was defined as a leukocyte count < 3.5 × 109/L over two months. RESULTS: Of 148 patients studied, late leucopenia was observed in 15.6% (17/109) of NUDT15/thiopurine methyltransferase (TPMT) normal and 64.1% (25/39) of intermediate metabolizers. In patients suffering late leucopenia, early DNATG levels were significantly higher than in those who did not develop late leucopenia (P = 4.9 × 10-13). The DNATG threshold of 319.43 fmol/µg DNA could predict late leucopenia in the entire sample with an area under the curve (AUC) of 0.855 (sensitivity 83%, specificity 81%), and in NUDT15/TPMT normal metabolizers, the predictive performance of a threshold of 315.72 fmol/µg DNA was much more remarkable with an AUC of 0.902 (sensitivity 88%, specificity 85%). 6TGN had a relatively poor correlation with late leucopenia whether in the entire sample (P = 0.021) or NUDT15/TPMT normal or intermediate metabolizers (P = 0.018, P = 0.55, respectively). CONCLUSION: Proactive therapeutic drug monitoring of DNATG could be an effective strategy to prevent late leucopenia in both NUDT15/TPMT normal and intermediate metabolizers with CD, especially the former.


Subject(s)
Crohn Disease , Leukopenia , Methyltransferases , Purines , Sulfhydryl Compounds , Humans , Crohn Disease/drug therapy , DNA , Leukopenia/chemically induced , Leukopenia/diagnosis , Purines/adverse effects , Sulfhydryl Compounds/adverse effects , Thioguanine/analysis
15.
Front Plant Sci ; 15: 1367917, 2024.
Article in English | MEDLINE | ID: mdl-38628365

ABSTRACT

Aster yaoshanensis sp. nov., a new species of the family Asteraceae is here described and illustrated. The species is presently known only from rock crevices of mountain valleys in Dayaoshan National Nature Reserve, Guangxi autonomous region, China. Phylogenetic analyses based on ITS sequences and complete plastome data have shown that this new species is a member of genus Aster with high support. Morphologically, it mostly resembles A. jishouensis, but it can be easily distinguished from the latter by bract indumentum (glabrous except margin ciliate vs. villous especially on veins abaxially, glabrous adaxially) and color (green vs. purple), shorter corolla (3.2-3.5 mm vs. 4.5-5.3 mm), bract stalk (obvious, ca.1.2 mm vs. sessile), and different distribution (Guangxi vs. Hunan). The detailed description, distribution map, and photos are provided. This study further elucidates the species identification, phylogeny and characteristic evolution of Aster.

16.
Sports Med Open ; 10(1): 33, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589676

ABSTRACT

BACKGROUND: Chronic ankle instability (CAI) is manifested by sensorimotor impairments in the sprained ankle, including deficits in sensation, motor function, and central integration or processing. These impairments have a significant impact on physical activities and daily life. Recently, some studies have suggested that bilateral deficits were observed in unilateral CAI, but contradictory evidence disputes this finding. Therefore, the objective of this study was to investigate whether bilateral sensorimotor deficits presented in individuals with unilateral CAI. METHODS: Without language restriction, the following databases were retrieved from database inception up until 3 November 2023, including PubMed, WOS, EMBASE, Cochrane, SPORTDiscus and CINAHL. Case-control and cross-sectional studies that investigated bilateral sensorimotor functions in individuals with unilateral CAI were included. Sensorimotor functions contained static and dynamic balance, functional performance, muscle strength and activation, as well as sensation. Outcome measures contained centre-of-pressure parameters, normalised reach distance, activation time and magnitude of muscle, sensory errors and threshold. The risk of bias and quality assessment of included studies were evaluated using a standardised tool recommended by the Cochrane Collaboration and the Epidemiological Appraisal Instrument, respectively. To explore the potential bilateral deficits associated with unilateral CAI, a comprehensive meta-analysis was conducted using Review Manager version 5.4. The analysis compared the injured limb of unilateral CAI with healthy controls and the uninjured limb with healthy controls. The main focus of this study was to investigate the differences between the uninjured limb and healthy controls. A random-effects model was employed and effect sizes were estimated using the standardised mean difference (SMD) with 95% confidence intervals (CIs). Effect sizes were deemed as weak (0.2-0.5), moderate (0.5-0.8), or large (> 0.8). RESULTS: A total of 11,442 studies were found; 30 studies were contained in the systematic review and 20 studies were included in the meta-analysis. Compared with healthy controls, those with unilateral CAI presented weak to moderate impairments in their uninjured limbs in static balance with eyes open (SMD = 0.32, 95% CI: 0.08 to 0.56), functional performance (SMD = 0.37; 95% CI: 0.08 to 0.67), kinesthesia (SMD = 0.52; 95% CI: 0.09 to 0.95) and tibialis anterior activation (SMD = 0.60, 95% CI: 0.19 to 1.01). There were no significant differences in other comparisons between the uninjured limb and healthy controls. CONCLUSIONS: Patients with unilateral CAI may present bilateral deficits in static balance with eyes open, functional performance and kinaesthesia. However, further evidence is required to confirm this point due to limited studies included in some analyses and small effect size. REGISTRATION: The protocol was registered in the International Prospective Register of Systematic Reviews platform (CRD: 42,022,375,855).

17.
Vet Res ; 55(1): 46, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589976

ABSTRACT

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Subject(s)
Bacteremia , Pasteurella Infections , Pasteurella multocida , Rodent Diseases , Humans , Animals , Rabbits , Mice , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Proto-Oncogene Proteins c-akt , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/veterinary , Lung/pathology , Bacteremia/veterinary , Bacteremia/pathology , Apoptosis , Mammals , Forkhead Box Protein O1
18.
Front Med ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619691

ABSTRACT

Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.

19.
J Org Chem ; 89(8): 5871-5877, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38595315

ABSTRACT

A palladium-catalyzed iodine-assisted carbonylation reaction of indoles with readily available ClCF2CO2Na and alcohols has been developed. This protocol provides a practical and efficient approach to highly regioselective indole-3-carboxylates via a preiodination strategy of indoles. Different from classic carbonylation using toxic and difficult-to-handle carbon monoxide, this operationally simple and scalable reaction employed difluorocarbene as the carbonyl surrogate.

20.
Clin Transl Oncol ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38558282

ABSTRACT

PURPOSE: Brain metastasis (BM) in colorectal cancer (CRC) is a rare event with poor prognosis. Apart from (K)RAS status and lung and bone metastasis no biomarkers exist to identify patients at risk. This study aimed to identify a gene expression signature associated with colorectal BM. METHODS: Three patient groups were formed: 1. CRC with brain metastasis (BRA), 2. exclusive liver metastasis (HEP) and, 3. non-metastatic disease (M0). RNA was extracted from primary tumors and mRNA expression was measured using a NanoString Panel (770 genes). Expression was confirmed by qPCR in a validation cohort. Statistical analyses including multivariate logistic regression followed by receiver operating characteristic (ROC) analysis were performed. RESULTS: EMILIN3, MTA1, SV2B, TMPRSS6, ACVR1C, NFAT5 and SMC3 were differentially expressed in BRA and HEP/M0 groups. In the validation cohort, differential NFAT5, ACVR1C and SMC3 expressions were confirmed. BRA patients showed highest NFAT5 levels compared to HEP/M0 groups (global p = 0.02). High ACVR1C expression was observed more frequently in the BRA group (42.9%) than in HEP (0%) and M0 (7.1%) groups (global p = 0.01). High SMC3 expressions were only detectable in the BRA group (global p = 0.003). Only patients with BM showed a combined high expression of NFAT5, ACVR1C or SMC3 as well as of all three genes. ROC analysis revealed a good prediction of brain metastasis by the three genes (area under the curve (AUC) = 0.78). CONCLUSIONS: The NFAT5, ACVR1C and SMC3 gene expression signature is associated with colorectal BM. Future studies should further investigate the importance of this biomarker signature.

SELECTION OF CITATIONS
SEARCH DETAIL
...