Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
Neural Regen Res ; 20(8): 2420-2432, 2025 Aug 01.
Article in English | MEDLINE | ID: mdl-39359098

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202508000-00031/figure1/v/2024-09-30T120553Z/r/image-tiff The protein connector enhancer of kinase suppressor of Ras 2 (CNKSR2), present in both the postsynaptic density and cytoplasm of neurons, is a scaffolding protein with several protein-binding domains. Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders, particularly intellectual disability, although the precise mechanism involved has not yet been fully understood. Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane, thereby influencing synaptic signaling and the morphogenesis of dendritic spines. However, the function of CNKSR2 in the cytoplasm remains to be elucidated. In this study, we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2. Through a combination of bioinformatic analysis and cytological experiments, we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome. We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290. Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2. When we downregulated CNKSR2 expression in mouse neuroblastoma cells (Neuro 2A), we observed significant changes in the expression of numerous centrosomal genes. This manipulation also affected centrosome-related functions, including cell size and shape, cell proliferation, and motility. Furthermore, we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder. Our findings establish a connection between CNKSR2 and the centrosome, and offer new insights into the underlying mechanisms of neurodevelopmental disorders.

2.
Front Pharmacol ; 15: 1413513, 2024.
Article in English | MEDLINE | ID: mdl-39257398

ABSTRACT

Objective: Schizonepeta tenuifolia -Saposhnikovia divaricata (Jingjie-Fangfeng, JF) has been used for years to treat allergic inflammatory skin diseases like atopic dermatitis, but the specific effects and mechanisms of JF are still unclear. Purpose: We aim to investigate the therapeutic effect and mechanism of JF in MC903-induced atopic dermatitis-like model. Methods: JF decoction was subjected to rigorous HPLC and GC analysis. The JF decoction was then freshly prepared and administered to MC903-induced atopic dermatitis -like mice models to investigate its therapeutic effects. Our evaluation focused on several markers of inflammation including the TEWL index, ear thickness, swelling, and specific inflammation indicators such as TSLP, IL33, IgE, and immune cell presence at the lesion sites. We measured Transient Receptor Potential Vanilloid 1 (TRPV1) expression levels through immunofluorescent staining in skin tissue from both atopic dermatitis patients and the MC903-treated mice. Furthermore, TRPV1 expression and macrophage activation markers were measured in LPS/IFN-γ-stimulated Raw264.7 and THP-1 cell models in vitro. Additionally, we developed cell lines that overexpress TRPV1 and investigated how JF treatment affects NF-κB p65 phosphorylation in these cells to understand better the role of TRPV1 in atopic dermatitis. Results: The JF decoction met the standards outlined in the Chinese pharmacopeia. The JF decoction significantly alleviated inflammatory skin symptoms and helped restore skin barrier function. Additionally, it reduced the levels of IgE and pro-inflammatory cytokines TSLP, IL-33, and IL-4. There was also a noticeable decrease in mast cell infiltration and degranulation. Notably, JF decoction reduced infiltrated macrophages with limited affection on T cell infiltration. It also decreased F4/80+/TRPV1+ cells in atopic dermatitis mice and TRPV1 expression in LPS/IFNγ-stimulated microphages. Additionally, we observed that CD68+/TRPV1+ cells increased in human atopic dermatitis tissue. Further studies showed that JF water extract (JF-WE) suppressed TRPV1 expression in macrophages, potentially by affecting NF-κB p65 phosphorylation rather than the JAK-STAT6 pathway. Conclusion: This study offers initial evidence of the effectiveness of JF-WE in suppressing inflammation in atopic dermatitis. The therapeutic effect might stems from its ability to downregulate TRPV1 expression and subsequent NF-κB p65 phosphorylation in macrophages.

3.
Transl Cancer Res ; 13(8): 3944-3959, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39262473

ABSTRACT

Background: Testicular germ cell tumor (TGCT) is a type of tumor with relatively lower incidence but being more prevalent in young men. The expression of programmed cell death ligand 1 (PD-L1) serves as a potential biomarker for predicting the survival outcomes of other tumors. Some studies discovered higher prevalence of PD-L1 in TGCT patients who achieved favorable treatment outcomes, while other studies showed lower or absent expression of PD-L1 in TGCT with the better prognosis as well. Therefore, in order to address this controversy and clarify the association between the expression of PD-L1 and pathological features and prognosis of TGCT, this meta-analysis was conducted. Methods: A comprehensive literature search was performed using following search terms: "testis", "testicle", "testicular", "cancer", "carcinoma", "tumor", "neoplasm", "programmed cell death ligand 1", "programmed death ligand 1", "PD-L1", "PDL1", "B7 homolog 1", "B7-H1", "B7H1" and "CD274". Relevant studies were retrieved according to the inclusion criteria from reputable databases including PubMed, Embase, Web of Science, Cochrane Library and China National Knowledge Infrastructure (CNKI). These studies investigated the expression of PD-L1 in both tumor cells and tumor infiltrating immune cells (TIICs) in TGCT. The overall proportion of PD-L1 positivity was assessed using R programming. Pooled hazard ratio (HR) and odds ratio (OR) with corresponding 95% confidence interval (CI) were calculated using Revman software to evaluate the involvement of PD-L1 expression in TGCT. The Newcastle-Ottawa Scale (NOS) was used to evaluate the quality assessment of included studies. Sensitivity analysis and publication bias evaluation were subsequently performed. Results: A total of eight eligible studies compromising 1,589 patients diagnosed with TGCT were finally included in this study. PD-L1 positivity was detected in 31% and 41% of TGCT patients' tumor cells and TIICs, respectively. The pooled data demonstrated a significant association between elevated PD-L1 expression levels in TIICs and a favorable prognosis characterized by the reduced disease progression and relapse events (HR =0.21, 95% CI: 0.13-0.33). Furthermore, PD-L1+ TIICs exhibited higher prevalence rates in seminoma (OR =2.11, 95% CI: 1.57-2.84) and embryonal carcinoma (OR =6.23, 95% CI: 2.42-16.02) patients. Notably, PD-L1 expression in TIICs displayed a tendency to increase in TGCT patients with lower stages or without lymph node metastasis. Conclusions: PD-L1 expression was observed in choriocarcinoma tumor cells, while yolk sac tumor and teratoma tumor cells exhibited lower or absent expression of PD-L1. Conversely, PD-L1 expression in TIICs was associated with seminoma and embryonal carcinoma, which was more commonly observed in TGCT patients with lower stages and better prognosis, thereby providing a theoretical foundation for the application of immunotherapy in relapsed/refractory TGCT patients.

4.
Front Pharmacol ; 15: 1390300, 2024.
Article in English | MEDLINE | ID: mdl-39253383

ABSTRACT

The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.

5.
Clin Transl Oncol ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39307892

ABSTRACT

Immune checkpoint inhibitors (ICIs) redefined the therapeutics of non-small cell lung cancer (NSCLC), leading to significant survival benefits and unprecedented durable responses. However, the majority of the patients develop resistance to ICIs, either primary or acquired. Establishing a definition of primary resistance to ICIs in different clinical scenarios is challenging and remains a work in progress due to the changing landscape of ICI-based regimens, mainly in the setting of early-stage NSCLC. The mechanisms of primary resistance to ICIs in patients with NSCLC include a plethora of pathways involving a cross-talk of the tumor cells, the tumor microenvironment and the host, leading to the development of an immunosuppressive phenotype. The optimal management of patients with NSCLC following primary resistance to ICIs represents a significant challenge in current thoracic oncology. Research in this field includes exploring other immunotherapeutic approaches, such as cancer vaccines, and investigating novel antibody-drug conjugates in patients with NSCLC.

6.
Eur J Med Chem ; 279: 116830, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39303516

ABSTRACT

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2), a critical regulator of proliferation pathways and immune checkpoint signaling in various cancers, is an attractive target for cancer therapy. Here, we report the discovery of a novel series of substituted pyridine carboxamide derivatives as potent allosteric SHP2 inhibitors. Among them, compound C6 showed excellent inhibitory activity against SHP2 and antiproliferative effect on MV-4-11 cell line with IC50 values of 0.13 and 3.5 nM, respectively. Importantly, orally administered C6 displayed robust in vivo antitumor efficacy in the MV-4-11 xenograft mouse model (TGI = 69.5 %, 30 mg/kg). Subsequent H&E and Ki67 staining showed that C6 significantly suppressed the proliferation of tumor cells. Notably, flow cytometry, ELISA and immunofluorescence experiments showed that C6 remarkably decreased the population of CD206+/Ly6C+ M2-like tumor-associated macrophages (TAMs), the expression level of interleukin-10 (IL-10), and the number of F4/80+/CD206+ M2-like TAMs, suggesting that C6 could effectively alleviate the activation and infiltration of M2-like TAMs. Taken together, these results illustrate that C6 is a promising SHP2 inhibitor worthy of further development.

7.
Environ Pollut ; 360: 124679, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39116923

ABSTRACT

The Ulva prolifera bloom is considered one of the most serious ecological disasters in the Yellow Sea in the past decade, forming a carbon sink in its source area within a short period but becoming a carbon source at its destination. To explore the effects of different environmental changes on seawater dissolved carbon pools faced by living U. prolifera in its originating area, U. prolifera were cultured in three sets with different light intensity (54, 108, and 162 µmol m-2 s-1), temperature (12, 20, and 28 °C) and nitrate concentration gradients (25, 50, and 100 µmol L-1). The results showed that moderate light (108 µmol m-2 s-1), temperature (20 °C), and continuous addition of exogenous nitrate significantly enhanced the absorption of dissolved inorganic carbon (DIC) in seawater by U. prolifera and most promoted its growth. Under the most suitable environment, the changes in the seawater carbonate system were mainly dominated by biological production and denitrification, with less influence from aerobic respiration. Facing different environmental changes, U. prolifera continuously changed its carbon fixation mode according to tissue δ13C results, with the changes in the concentrations of various components of DIC in seawater, especially the fluctuation of HCO3- and CO2 concentrations. Enhanced light intensity of 108 µmol m-2 s-1 could shift the carbon fixation pathway of U. prolifera towards the C4 pathway compared to temperature and nitrate stimulation. Environmental conditions at the origin determined the amount of dissolved carbon fixed by U. prolifera. Therefore, more attention should be paid to the changes in marine environmental conditions at the origin of U. prolifera, providing a basis for scientific management of U. prolifera.


Subject(s)
Carbon Sequestration , Carbon , Seawater , Ulva , Ulva/metabolism , Seawater/chemistry , Nitrates/analysis , Temperature , Edible Seaweeds
8.
Expert Opin Investig Drugs ; : 1-16, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39177331

ABSTRACT

INTRODUCTION: The misfolding and aggregation of proteins are associated with various neurodegenerative diseases, such as Alzheimer's disease (AD). The small-molecule engineered antibodies, such as single-chain fragment variable (scFv) antibodies and nanobodies (Nbs), have gained attention in recent years due to their strong conformational specificity, ability to cross the blood-brain barrier (BBB), low immunogenicity, and enhanced proximity to active sites within aggregates. AREAS COVERED: We have reviewed recent advances in therapies involving scFvs and Nbs that efficiently and specifically target pathological protein aggregates. Relevant publications were searched for in MEDLINE, GOOGLE SCHOLAR, Elsevier ScienceDirect and Wiley Online Library. EXPERT OPINION: We reviewed the recent and specific targeting of pathological protein aggregates by scFvs and Nbs. These engineered antibodies can inhibit the aggregation or promote the disassembly of misfolded proteins by recognizing antigenic epitopes or through conformational specificity. Additionally, we discuss strategies for improving the effective application of engineered antibodies in treating AD. These technological strategies will lay the foundation for the clinical application of small-molecule antibody drugs in developing effective treatments for neurological diseases. Through rational application strategies, small-molecule engineered antibodies are expected to have significant potential in targeted therapy for neurological disorders.

9.
Animals (Basel) ; 14(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39123779

ABSTRACT

The hypothalamic-pituitary-ovarian (HPO) axis plays a pivotal role in the regulation of egg production in chickens. In addition to the traditional understanding of the HPO axis, emerging research highlights the significant role of circRNAs in modulating the functions of this axis. In the study, we collected hypothalamus, pituitary, and ovarian tissues from low-yielding and high-yielding Bian chickens for transcriptome sequencing. We identified 339, 339, and 287 differentially expressed (DE) circRNAs with p_value < 0.05 and |log2 (fold change)| ≥ 1 in hypothalamus, pituitary, and ovarian tissues. The Gene Ontology (GO) enrichment analysis for the source genes of DE circRNAs has yielded multiple biological process (BP) entries related to cell development, the nervous system, and proteins, including cellular component morphogenesis, cell morphogenesis, nervous system development, neurogenesis, protein modification process, and protein metabolic process. In the top 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we observed the enrichment of the GnRH signaling pathway in both the hypothalamus and the pituitary, solely identified the GnRH secretion pathway in the pituitary, and discovered the pathway of oocyte meiosis in the ovary. Furthermore, given that circRNA primarily functions through the ceRNA mechanism, we constructed ceRNA regulatory networks with DE circRNAs originating from the GnRH signaling pathway, GnRH secretion, ovarian steroidogenesis, steroid hormone biosynthesis, and the estrogen signaling pathway. Finally, several important ceRNA regulatory networks related to reproduction were discovered, such as novel_circ_003662-gga-let-7b/miR-148a-3p/miR-146a-5p/miR-146b-5p and novel_circ_003538-gga-miR-7464-3p-SLC19A1. This study will contribute to advancements in understanding the involvement of circRNAs in the HPO axis, potentially leading to innovations in improving egg production and poultry health.

10.
Nanomaterials (Basel) ; 14(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39120355

ABSTRACT

Antimicrobial resistance (AMR) presents an escalating global challenge as conventional antibiotic treatments become less effective. In response, photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising alternatives. While rooted in ancient practices, these methods have evolved with modern innovations, particularly through the integration of lasers, refining their efficacy. PDT harnesses photosensitizers to generate reactive oxygen species (ROS), which are detrimental to microbial cells, whereas PTT relies on heat to induce cellular damage. The key to their effectiveness lies in the utilization of photosensitizers, especially when integrated into nano- or micron-scale supports, which amplify ROS production and enhance antimicrobial activity. Over the last decade, carbon dots (CDs) have emerged as a highly promising nanomaterial, attracting increasing attention owing to their distinctive properties and versatile applications, including PDT and PTT. They can not only function as photosensitizers, but also synergistically combine with other photosensitizers to enhance overall efficacy. This review explores the recent advancements in CDs, underscoring their significance and potential in reshaping advanced antimicrobial therapeutics.

11.
ACS Appl Mater Interfaces ; 16(32): 42221-42229, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088744

ABSTRACT

Quasi-two-dimensional (quasi-2D) layered perovskites with mixed dimensions offer a promising avenue for stable and efficient solar cells. However, randomly distributed three-dimensional (3D) perovskites near the film surface limit the device performance of quasi-2D perovskites due to increased nonradiative recombination and ion migration. Herein, we construct a 2D (n = 4 top)-3D-2D (n = 2 bottom) heterostructure of quasi-2D perovskites by using 3-chlorobenzylamine iodine, which can effectively reduce defect density and restrain ion migration. A champion efficiency of 22.22% for quasi-2D perovskite solar cells is achieved due to remarkably reduced nonradiative voltage loss and increased electron extraction. Additionally, the 2D-3D-2D perovskite solar cells also exhibit excellent thermal and humidity stabilities, retaining over 90 and 85% of the initial efficiencies after 2000 h under a heat stress of 65 °C and at air ambient of ∼50% humidity, respectively. Our results provide a general approach to tune perovskite films for suppressing ion migration and achieving high-performance perovskite solar cells.

12.
Angew Chem Int Ed Engl ; : e202405370, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136322

ABSTRACT

Photocatalytic utilization of methanol and nitrate as carbon and nitrogen sources for the direct synthesis of amino acids could provide a sustainable way for the valorization of green "liquid sunlight" and nitrate waste. In this study, we developed an efficient photochemical method to synthesize glycine directly from methanol and nitrate, which cascades the C-C coupling to form glycol, nitrate reduction to NH3, and finally C-N coupling to generate glycine. Interestingly, the involved photocatalytic tandem reactions show a synergistic effect, in which the presence of nitrate is the dominant factor to enable the overall reaction and reach high synthetic efficiency. Ba2+-TiO2 nanoparticles are confirmed as a feasible and efficient catalyst system for the photosynthesis of glycine with a remarkable glycine photosynthesis rate of 870 µmol gcat-1 h-1 under optimal conditions. This work establishes a novel catalytic system for amino acid synthesis from methanol and nitrate under mild conditions. These results also allow us to further suppose the formation pathways of amino acids on the primitive earth, as an extension to proposals based on the Miller-Urey experiments.

13.
Crit Rev Microbiol ; : 1-15, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967384

ABSTRACT

The gut microbiota features an abundance of diverse microorganisms and represents an important component of human physiology and metabolic homeostasis, indicating their roles in a wide array of physiological and pathological processes in the host. Maintaining balance in the gut microbiota is critical for normal functionality as microbial dysbiosis can lead to the occurrence and development of diseases through various mechanisms. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are non-coding RNAs that perform important regulatory functions for many processes. Furthermore, the gut microbiota and lncRNAs/circRNAs are known to interact in a range of both physiological and pathological activities. In this article, we review existing research relevant to the interaction between the gut microbiota and lncRNAs/circRNAs and investigate the role of their crosstalk in the pathogenesis of different diseases. Studies have shown that, the gut microbiota can target lncRNAs ENO1-IT1, BFAL1, and LINC00152 to regulate colorectal cancer development via various signaling pathways. In addition, the gut microbiota can influence mental diseases and lung tumor metastasis by modulating circRNAs such as circNF1-419, circ_0001239, circHIPK2 and mmu_circ_0000730. These findings provide a theoretical basis for disease prevention and treatment and suggest that gut microbiota-lncRNA/circRNA crosstalk has high clinical value.

14.
Front Cell Infect Microbiol ; 14: 1392129, 2024.
Article in English | MEDLINE | ID: mdl-39035354

ABSTRACT

Helicobacter pylori (H. pylori) is a harmful bacterium that is difficult to conveniently diagnose and effectively eradicate. Chronic H. pylori infection increases the risk of gastrointestinal diseases, even cancers. Despite the known findings, more underlying mechanisms are to be deeply explored to facilitate the development of novel prevention and treatment strategies of H. pylori infection. Long noncoding RNAs (lncRNAs) are RNAs with more than 200 nucleotides. They may be implicated in cell proliferation, inflammation and many other signaling pathways of gastrointestinal cancer progression. The dynamic expression of lncRNAs indicates their potential to be diagnostic or prognostic biomarkers. In this paper, we comprehensively summarize the processes of H. pylori infection and the treatment methods, review the known findings of lncRNA classification and functional mechanisms, elucidate the roles of lncRNAs in H. pylori-related gastrointestinal cancer, and discuss the clinical perspectives of lncRNAs.


Subject(s)
Gastrointestinal Neoplasms , Helicobacter Infections , Helicobacter pylori , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Gastrointestinal Neoplasms/microbiology , Gastrointestinal Neoplasms/genetics , Helicobacter Infections/microbiology , Helicobacter Infections/complications , Signal Transduction
15.
Heliyon ; 10(13): e33344, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39035486

ABSTRACT

Background: Homer protein homolog 3 (HOMER3), a factor implicated in both physiological and pathological processes, has been studied extensively to determine the relationship between its expression level and the prognosis of various malignancies. However, the significance and clinicopathological role of HOMER3 in colorectal adenocarcinoma remain unclear. Methods: In this study, bioinformatics techniques were used to find the correlation between high HOMER3 expression levels and clinicopathological features of colorectal adenocarcinoma (COAD) patients. Results: Cellular experiments confirmed the differential expression of HOMER3 in tumor cells compared to normal cells. HOMER3 overexpression was significantly associated with COAD staging and carcinoembryonic antigen (CEA) levels. Patients with high HOMER3 expression levels have a poor prognosis. HOMER3 expression levels can be distinguished more accurately between tumor and non-tumor tissues (AUC = 0.634). The HOMER3 gene variation rate in COAD tissue was 0.7 %. Moreover, 16 of the 22 DNA methylation sites in HOMER3 were associated with COAD prognosis. Our findings confirmed that HOMER3 was positively correlated with immune cell infiltration and immune checkpoints (PD-1, CTLA-4, LMTK3, and LAG3) in COAD, Specifically, we will clearly state that while there is statistical significance, the actual strength of the correlations is weak. During KEGG enrichment analysis, HOMER3 was enriched along with DLG4 and SHANK1 in glutamatergic synapses. Additionally, upstream microRNAs that could bind to HOMER3 were predicted. These findings suggest that HOMER3 might be involved in COAD development and immune regulation. Conclusions: HOMER3 acts as a potential biomarker that can facilitate innovative developments in the diagnosis and prognostic assessment of COAD.

16.
Commun Biol ; 7(1): 742, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890421

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.


Subject(s)
Anaplastic Lymphoma Kinase , Antimalarials , Lysine-tRNA Ligase , Plasmodium falciparum , Protein Kinase Inhibitors , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Lysine-tRNA Ligase/antagonists & inhibitors , Lysine-tRNA Ligase/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Antimalarials/pharmacology , Antimalarials/chemistry , Structure-Activity Relationship , Humans , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
17.
ACS Appl Mater Interfaces ; 16(27): 34561-34577, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38919091

ABSTRACT

Small extracellular vesicles (sEVs) hold considerable promise for drug delivery due to their natural origin and inherent qualities. However, their clinical application is impeded by two main challenges: low yield and potential side effects. Therefore, it is crucial to obtain substantial quantities of sEVs that adhere to rigorous biosafety standards to ensure successful translation into clinical practice. To address this need, we propose exploring optimized methods for sourcing and separating sEVs, taking inspiration from clinical blood transfusion. In particular, we have identified blood sEVs as a viable alternative and developed a novel separation technique for their isolation. Our approach involves incubating dopamine solution with serum, resulting in the formation of polydopamine (PDA) nanoparticles on the surface of blood sEVs. These nanoparticles have minimal impact on blood sEVs, facilitating their easy separation under standard centrifugal conditions with high purity. This innovative technique enables the development of nanocarriers using blood sEVs with efficient drug-loading capabilities and enhanced pharmacokinetics. Additionally, the incorporation of PDA nanoparticles imparts a photothermal effect to the nanomedicines, enabling the integration of chemotherapy and photothermal therapy. Moreover, the photothermal effect holds the potential to facilitate the membrane fusion of sEVs and cells. In summary, our straightforward surface functionalization technique utilizing PDA effectively isolates blood sEVs and enables chemo-thermal tumor therapy. This approach significantly enhances the feasibility of translating sEV-based nanomedicines into clinical applications.


Subject(s)
Extracellular Vesicles , Indoles , Nanoparticles , Polymers , Indoles/chemistry , Polymers/chemistry , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Nanoparticles/chemistry , Humans , Animals , Mice , Drug Carriers/chemistry , Photothermal Therapy , Doxorubicin/chemistry , Doxorubicin/pharmacology
19.
Medicine (Baltimore) ; 103(19): e37999, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728502

ABSTRACT

Glioma is a typical malignant tumor of the nervous system. It is of great significance to identify new biomarkers for accurate diagnosis of glioma. In this context, THOC6 has been studied as a highly diagnostic prognostic biomarker, which contributes to improve the dilemma in diagnosing gliomas. We used online databases and a variety of statistical methods, such as Wilcoxon rank sum test, Dunn test and t test. We analyzed the mutation, location and expression profile of THOC6, revealing the network of THOC6 interaction with disease. Wilcoxon rank sum test showed that THOC6 is highly expressed in gliomas (P < 0.001). Dunn test, Wilcoxon rank sum test and t test showed that THOC6 expression was correlated with multiple clinical features. Logistic regression analysis further confirmed that THOC6 gene expression was a categorical dependent variable related to clinical features of poor prognosis. Kaplan-Meier survival analysis showed that the overall survival (OS) of glioma patients with high expression of THOC6 was poor (P < 0.001). Both univariate (P < 0.001) and multivariate (P = 0.04) Cox analysis confirmed that THOC6 gene expression was an independent risk factor for OS in patients with glioma. ROC curve analysis showed that THOC6 had a high diagnostic value in glioma (AUC = 0.915). Based on this, we constructed a nomogram to predict patient survival. Enrichment analysis showed that THOC6 expression was associated with multiple signal pathways. Immuno-infiltration analysis showed that the expression of THOC6 in glioma was closely related to the infiltration level of multiple immune cells. Molecular docking results showed that THOC6 might be the target of anti-glioma drugs. THOC6 is a novel diagnostic factor and prognostic biomarker of glioma.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Computational Biology , Glioma , Molecular Docking Simulation , RNA-Binding Proteins , Female , Humans , Male , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Computational Biology/methods , Glioma/genetics , Glioma/pathology , Kaplan-Meier Estimate , Prognosis , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
20.
PLoS One ; 19(5): e0301358, 2024.
Article in English | MEDLINE | ID: mdl-38771804

ABSTRACT

Drug-resistant bacteria arising from antibiotic abuse infections have always been a serious threat to human health. Killing bacteria with toxic reactive oxygen species (ROS) is an ideal antibacterial method for treating drug-resistant bacterial infections. Here, we prepared Pt-Ru bimetallic nanoclusters (Pt-Ru NCs) with higher peroxidase (POD)-like activity than Pt monometallic nanoclusters. Pt-Ru can easily catalyze the decomposition of H2O2 to produce ·OH, thereby catalyzing the transformation of 3,3',5,5'-tetramethylbiphenylamine (TMB) to blue oxidized TMB (oxTMB). We utilized the POD-like activity of the Pt-Ru NCs for antibacterial therapy. The results showed that at doses of 40 µg/mL and 16 µg/mL, the Pt-Ru NCs exhibited extraordinary antibacterial activity against E. coli and S. aureus, demonstrating the enormous potential of Pt-Ru NCs as antibacterial agents.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Metal Nanoparticles , Platinum , Ruthenium , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Platinum/chemistry , Platinum/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Peroxidase/metabolism , Hydrogen Peroxide/chemistry , Catalysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL