Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7695, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001141

ABSTRACT

The transformation from one compound to another involves the breaking and formation of chemical bonds at the single-bond level, especially during catalytic reactions that are of great significance in broad fields such as energy conversion, environmental science, life science and chemical synthesis. The study of the reaction process at the single-bond limit is the key to understanding the catalytic reaction mechanism and further rationally designing catalysts. Here, we develop a method to monitor the catalytic process from the perspective of the single-bond energy using high-resolution scanning tunneling microscopy single-molecule junctions. Experimental and theoretical studies consistently reveal that the attack of a halogen atom on an Au atom can reduce the breaking energy of Au-S bonds, thereby accelerating the bond cleavage reaction and shortening the plateau length during the single-molecule junction breaking. Furthermore, the distinction in catalytic activity between different halogen atoms can be compared as well. This study establishes the intrinsic relationship among the reaction activation energy, the chemical bond breaking energy and the single-molecule junction breaking process, strengthening our mastery of catalytic reactions towards precise chemistry.

2.
Sci Adv ; 9(22): eadg4346, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37256956

ABSTRACT

In aromatic systems with large π-conjugated structures, armchair and zigzag configurations can affect each material's electronic properties, determining their performance and generating certain quantum effects. Here, we explore the intrinsic effect of armchair and zigzag pathways on charge transport through single hexabenzocoronene molecules. Theoretical calculations and systematic experimental results from static carbon-based single-molecule junctions and dynamic scanning tunneling microscope break junctions show that charge carriers are preferentially transported along the hexabenzocoronene armchair pathway, and thus, the corresponding current through this pathway is approximately one order of magnitude higher than that through the zigzag pathway. In addition, the molecule with the zigzag pathway has a smaller energy gap. In combination with its lower off-state conductance, it shows a better field-effect performance because of its higher on-off ratio in electrical measurements. This study on charge transport pathways offers a useful perspective for understanding the electronic properties of π-conjugated systems and realizing high-performance molecular nanocircuits toward practical applications.

3.
Adv Mater ; 35(28): e2301876, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37022284

ABSTRACT

The electronic characteristics of organic optoelectronic materials determine the performance of corresponding devices. Clarifying the relationship between molecular structure and electronic characteristics at the single-molecule level can help to achieve high performance for organic optoelectronic materials and devices, especially for organic photovoltaics. In this work, a typical acceptor-donor-acceptor (A-D-A)-type molecule is explored by combining theoretical and experimental studies to reveal the intrinsic electronic characteristics at the single-molecule level. Specifically, the A-D-A-type molecule with 1,1-dicyano methylene-3-indanone (INCN) acceptor units exhibits an enhanced conductance in single-molecule junctions when compared with the control donor molecule, because the acceptor units of the A-D-A-type molecule contribute additional transport channels. In addition, through opening the S∙∙∙O noncovalent conformational lock by protonation to expose the -S anchoring sites, the charge transport of the D central part is detected, proving that the conductive orbitals contributed by the INCN acceptor groups can penetrate the whole A-D-A molecule. These results provide important insights into the development of high-performance organic optoelectronic materials and devices toward practical applications.


Subject(s)
Electronics , Indans , Electric Conductivity
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-980081

ABSTRACT

Objective@#To study the effect of stem cell factor (SCF) on the angiogenic ability of cocultured dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (HUVECs).@*Methods @#This study has been reviewed and approved by the Ethics Committee. The experiment was split into the HUVECs, SCF+HUVECs, DPSCs+HUVECs, and SCF+DPSCs+HUVECs groups. A mixture of SCF and culture medium was used to prepare a mixed culture medium with an SCF concentration of 100 ng/mL. In vitro coculture of DPSCs and HUVECs was performed at a 1∶5 ratio. CCK-8 proliferation assay was used to observe the proliferative capacity of cells in each group on days 1, 3, 5, and 7. Wound healing and Transwell migration assays were used to detect the effect of SCF on cell migration under either direct or indirect coculture conditions, respectively. In vitro angiogenesis experiments were performed to detect the angiogenic capacity of the cells in each group. The vascular endothelial growth factor A (VEGFA) concentration in the cell culture supernatant was detected using ELISAs, and the protein expression levels of CD31, CD34, and VEGFA were detected using Western blot analysis. @*Results @# Wound healing and Transwell migration experiments showed that SCF significantly promoted the migration of cocultured DPSCs and HUVECs (P<0.05). The in vitro angiogenesis experiment showed that the number of branches and the total length of branches of tubular structures in the SCF+DPSCs+HUVECs group were significantly greater than those of the other groups (P<0.05), and the expression levels of the vascular-related proteins CD31, CD34, and VEGFA in this group were greater (P<0.01). @*Conclusion @# SCF can enhance the migration and in vitro angiogenesis of cocultured DPSCs and HUVECs.

5.
J Am Chem Soc ; 144(34): 15689-15697, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35930760

ABSTRACT

Stacking interactions are of significant importance in the fields of chemistry, biology, and material optoelectronics because they determine the efficiency of charge transfer between molecules and their quantum states. Previous studies have proven that when two monomers are π-stacked in series to form a dimer, the electrical conductance of the dimer is significantly lower than that of the monomer. Here, we present a strong opposite case that when two anthanthrene monomers are π-stacked to form a dimer in a scanning tunneling microscopic break junction, the conductance increases by as much as 25 in comparison with a monomer, which originates from a room-temperature quantum interference. Remarkably, both theory and experiment consistently reveal that this effect can be reversed by changing the connectivity of external electrodes to the monomer core. These results demonstrate that synthetic control of connectivity to molecular cores can be combined with stacking interactions between their π systems to modify and optimize charge transfer between molecules, opening up a wide variety of potential applications ranging from organic optoelectronics and photovoltaics to nanoelectronics and single-molecule electronics.


Subject(s)
Graphite , Electric Conductivity , Electrodes , Electronics , Microscopy, Scanning Tunneling , Polymers
6.
Rep Prog Phys ; 85(8)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35623319

ABSTRACT

Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.

7.
Sci Adv ; 8(12): eabm3541, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35319984

ABSTRACT

Single-molecule junctions (SMJs) offer a novel strategy for miniaturization of electronic devices. In this work, we realize a graphene-porphyrin-graphene SMJ driven by electric field and proton transfer in two configurations. In the transistor configuration with ionic liquid gating, an unprecedented field-effect performance is achieved with a maximum on/off ratio of ~4800 and a gate efficiency as high as ~179 mV/decade in consistence with the theoretical prediction. In the other configuration, controllable proton transfer, tautomerization switching, is directly observed with bias dependence. Room temperature proton transfer leads to a two-state conductance switching, and more precise tautomerization is detected, showing a four-state conductance switching at high bias voltages and low temperatures. Such an SMJ in two configurations provides new insights into not only building multifunctional molecular nanocircuits toward real applications but also deciphering the intrinsic properties of matters at the molecular scale.

8.
ACS Nano ; 16(3): 3476-3505, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35179354

ABSTRACT

Monitoring and manipulating the physical and chemical behavior of single molecules is an important development direction of molecular electronics that aids in understanding the molecular world at the single-molecule level. The electrical detection platform based on single-molecule junctions can monitor physical and chemical processes at the single-molecule level with a high temporal resolution, stability, and signal-to-noise ratio. Recently, the combination of single-molecule junctions with different multimodal control systems has been widely used to explore significant physical and chemical phenomena because of its powerful monitoring and control capabilities. In this review, we focus on the applications of single-molecule junctions in monitoring molecular physical and chemical processes. The methods developed for characterizing single-molecule charge transfer and spin characteristics as well as revealing the corresponding intrinsic mechanisms are introduced. Dynamic detection and regulation of single-molecule conformational isomerization, intermolecular interactions, and chemical reactions are also discussed in detail. In addition to these dynamic investigations, this review discusses the open challenges of single-molecule detection in the fields of physics and chemistry and proposes some potential applications in this field.

9.
Small ; 17(28): e2008109, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34089231

ABSTRACT

Water splitting is an essential process for converting light energy into easily storable energy in the form of hydrogen. As environmentally preferable catalysts, Cu-based materials have attracted attention as water-splitting catalysts. To enhance the efficiency of water splitting, a reaction process should be developed. Single-molecule junctions (SMJs) are attractive structures for developing these reactions because the molecule electronic state is significantly modulated, and characteristic electromagnetic effects can be expected. Here, water splitting is induced at Cu-based SMJ and the produced hydrogen is characterized at a single-molecule scale by employing electron transport measurements. After visible light irradiation, the conductance states originate from Cu/hydrogen molecule/Cu junctions, while before irradiation, only Cu/water molecule/Cu junctions were observed. The vibration spectra obtained from inelastic electron tunneling spectroscopy combined with the first-principles calculations reveal that the water molecule trapped between the Cu electrodes is decomposed and that hydrogen is produced. Time-dependent and wavelength-dependent measurements show that localized-surface plasmon decomposes the water molecule in the vicinity of the junction. These findings indicate the potential ability of Cu-based materials for photocatalysis.

10.
Chem Rec ; 21(6): 1284-1299, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33140918

ABSTRACT

Molecule-based field-effect transistors (FETs) are of great significance as they have a wide range of application prospects, such as logic operations, information storage and sensor monitoring. This account mainly introduces and reviews our recent work in molecular FETs. Specifically, through molecular and device design, we have systematically investigated the construction and performance of FETs from macroscale to nanoscale and even single molecule. In particular, we have proposed the broad concept of molecular FETs, whose functions can be achieved through various external controls, such as light stimulation, and other physical, chemical or biological interactions. In the end, we tend to focus the discussion on the development challenges of single-molecule FETs, and propose prospects for further breakthroughs in this field.

11.
Front Cell Dev Biol ; 8: 597993, 2020.
Article in English | MEDLINE | ID: mdl-34239867

ABSTRACT

Secretory pathway calcium ATPase 1 (SPCA1) is a calcium pump localized specifically to the Golgi. Its effects on UVA-induced senescence have never been examined. In our study, expression of SPCA1 was increased in UVA-irradiated human dermal fibroblasts (HDFs) by activating mitogen-activated protein kinase (MAPK) and its downstream transcription factor, c-jun. Dual-luciferase reporter and chromatin immunoprecipitation assays revealed that c-jun regulated SPCA1 by binding to its promoter. Furthermore, downregulating SPCA1 with siRNA transfection aggravated UVA-induced senescence due to an elevation of intracellular calcium concentrations and a subsequent increase in reactive oxygen species (ROS) and MAPK activity. In contrast, overexpression of SPCA1 reduced calcium overload, consequently lowering the ROS level and suppressing MAPK activation. This alleviated the cellular senescence caused by UVA irradiation. These results indicated that SPCA1 might exert a protective effect on UVA-induced senescence in HDFs via forming a negative feedback loop. Specifically, activation of MAPK/c-jun triggered by UVA transcriptionally upregulated SPCA1. In turn, the increased SPCA1 lowered the intracellular Ca2+ level, probably through pumping Ca2+ into the Golgi, leading to a reduction of ROS, eventually decreasing MAPK activity and diminishing UVA-induced senescence.

12.
Cardiovasc Pathol ; 35: 29-36, 2018.
Article in English | MEDLINE | ID: mdl-29747050

ABSTRACT

BACKGROUND: Non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been demonstrated as central mediators in cardiac hypertrophy responses. LncRNA cardiac hypertrophy related factor (CHRF) has been reported to be implicated in cardiac hypertrophy. However, the underlying mechanisms of CHRF have not been thoroughly elucidated. METHODS: Expressions of CHRF and microRNA-93 (miR-93) in heart tissues and cardiomyocytes were detected by RT-qPCR assay. Cell surface area, protein/DNA ratio, atrial natriuretic peptide (ANP) and ß-myosin heavy chain (ß-MHC) levels were examined as the indicators of cardiac hypertrophy responses. Luciferase reporter assay was used to validate the direct binding between miR-93 and CHRF or Akt3 3'UTR. RIP assay was performed to demonstrate the potential interaction between CHRF and miR-93. Akt3 protein level was determined by western blot assay. RESULTS: CHRF expression was up-regulated and miR-93 expression was down-regulated in mice and cellular models of cardiac hypertrophy. CHRF knockdown attenuated isoproterenol (Iso)-induced hypertrophy responses through up-regulating miR-93 expression in cardiomyocytes. Moreover, CHRF acted as a competing endogenous RNA of miR-93 to sequester miR-93 from Akt3, resulting in the increase of Akt3 expression. Furthermore, miR-93 suppressed cardiac hypertrophy responses by targeting Akt3 in Iso-stimulated cardiomyocytes. CONCLUSIONS: CHRF induced cardiac hypertrophy by regulating miR-93/Akt3 axis in Iso-stimulated cardiomyocytes, deepening our understanding of the molecular mechanisms of lncRNAs in cardiac hypertrophy and providing a potential therapy target for cardiac hypertrophy.


Subject(s)
Cardiomegaly/enzymology , MicroRNAs/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism , 3' Untranslated Regions , Adrenergic beta-Agonists/toxicity , Animals , Binding Sites , Cardiomegaly/genetics , Cardiomegaly/pathology , Disease Models, Animal , Gene Expression Regulation, Enzymologic , Isoproterenol/toxicity , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , Signal Transduction
13.
Oncol Lett ; 14(3): 2991-2995, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28927049

ABSTRACT

There is currently no effective biomarker for determining the survival of patients with lung adenocarcinoma. The purpose of the present study was to construct a prognostic survival model using microRNA (miRNA) expression data from patients with lung adenocarcinoma. miRNA data were obtained from The Cancer Genome Atlas, and patients with lung adenocarcinoma were divided into either the training or validation set based on the random allocation principle. The prognostic model focusing on miRNA was constructed, and patients were divided into high-risk or low-risk groups as per the scores, to assess their survival time. The 5-year survival rate from the subgroups within the high- and low-risk groups was assessed. P-values of the prognostic model in the total population, the training set and validation set were 0.0017, 0.01986 and 0.02773, respectively, indicating that the survival time of the lung adenocarcinoma high-risk group was less than that of the low-risk group. Thus, the model had a good assessment effectiveness for the untreated group (P=0.00088) and the Caucasian patient group (P=0.00043). In addition, the model had the best prediction effect for the 5-year survival rate of the Caucasian patient group (AUC=0.629). In conclusion, the prognostic model developed in the present study can be used as an independent prognostic model for patients with lung adenocarcinoma.

SELECTION OF CITATIONS
SEARCH DETAIL