Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Ultrasound Med Biol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098472

ABSTRACT

OBJECTIVE: Recurrent stroke after revascularization surgeries predicts poor outcome in patients with moyamoya disease (MMD). Early identification of patients with stroke risk paves the way for rescue intervention. This study aimed to investigate the role of ultrasound in identifying patients at risk of post-operative ischemic events (PIEs). METHODS: This prospective study enrolled patients with symptomatic MMD who underwent indirect revascularization surgeries. Ultrasound examinations were performed preoperatively and at 3 mo post-operatively to evaluate the hemodynamic changes in extracranial and intracranial arteries on the operated side. PIE was defined as ischemic stroke or transient ischemic attack in the operated hemisphere within 1 y. The areas under receiver operating characteristic curves were compared between models for prediction of PIE. RESULTS: A total of 56 operated hemispheres from 36 patients (mean age, 23.0 ± 18.5 y) were enrolled in this study, and 27% developed PIE. In multivariate logistic regression models, PIE was associated with lower end-diastolic velocity and flow volume (FV) of the ipsilateral external carotid artery (ECA), and lower FV of ipsilateral superficial temporal artery and occipital artery at 3 mo post-operatively (all p < 0.05). Moreover, the post-operative FV of the ipsilateral ECA was the only one factor that significantly increased the areas under receiver operating characteristic curves from 0.727 to 0.932 when adding to a clinical-angiographic model for prediction of PIE (p = 0.017). This parameter was significantly lower in hemispheres with PIE, both in adult and pediatric patients. CONCLUSION: After indirect revascularization, surgeries in patients with symptomatic MMD, FV of ipsilateral ECA at 3 mo helps clinicians to identify patients at risk of PIE.

2.
Clin Exp Med ; 24(1): 187, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136841

ABSTRACT

Glioblastoma (GBM) is a highly heterogeneous disease with poor clinical outcomes. To comprehensively dissect the molecular landscape of GBM and heterogeneous macrophage clusters in the progression of GBM, this study integrates single-cell and bulk transcriptome data to recognize a distinct pro-tumor macrophage cluster significantly associated with the prognosis of GBM and develop a GBM prognostic signature to facilitate prior subtypes. Leveraging glioma single-cell sequencing data, we identified a novel pro-tumor macrophage subgroup, marked by S100A9, which might interact with endothelial cells to facilitate tumor progression via angiogenesis. To further benefit clinical application, a prognostic signature was established with the genes associated with pro-tumor macrophages. Patients classified within the high-risk group characterized with enrichment in functions related to tumor progression, including epithelial-mesenchymal transition and hypoxia, displays elevated mutations in the TERT promoter region, reduced methylation in the MGMT promoter region, poorer prognoses, and diminished responses to temozolomide therapy, thus effectively discriminating between the prognostic outcomes of GBM patients. Our research sheds light on the intricate microenvironment of gliomas and identifies potential molecular targets for the development of novel therapeutic approaches.


Subject(s)
Gene Expression Profiling , Glioblastoma , Single-Cell Analysis , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Tumor Microenvironment/genetics , Temozolomide/therapeutic use , Macrophages/metabolism , Transcriptome , Telomerase/genetics , Tumor Suppressor Proteins/genetics , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , DNA Methylation , Gene Expression Regulation, Neoplastic , DNA Modification Methylases/genetics , DNA Repair Enzymes
3.
Nano Lett ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119944

ABSTRACT

Combining rare earth elements with the halide perovskite structure offers valuable insights into designing nonlead (Pb) luminescent materials. However, most of these compositions tend to form zero-dimensional (0D) networks of metal-halide polyhedra, with higher-dimensional (1D, 2D, and 3D) structures receiving relatively less exploration. Herein, we present synthesis and optical properties of Cs3CeCl6·3H2O, characterized by its unique 1D crystal structure. The conduction band minimum of Cs3CeCl6·3H2O becomes less localized as a result of the increased structural dimension, making it possible for the materials to achieve an efficient electrical injection. For both Cs3CeCl6·3H2O single crystals and nanocrystals, we also observed remarkable luminescence with near-unity photoluminescence quantum yield and exceptional phase stability. Cs3CeCl6·3H2O single crystals demonstrate an X-ray scintillation light yield of 31900 photons/MeV, higher than that of commercial LuAG:Ce (22000 photons/MeV); electrically driven light-emitting diodes fabricated with Cs3CeCl6·3H2O nanocrystals yield the characteristic emission of Ce3+, indicating their potential use in next-generation violet-light-emitting devices.

4.
Molecules ; 29(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064926

ABSTRACT

Molybdenum (Mo) is a rare and important element extensively utilised in aerospace, radar communications, optoelectronic devices, and the military. This study proposes an environmentally friendly physical method based on photon-phonon resonance absorption for the separation of Mo from sodium molybdate (Na2MoO4). We examined the vibrational spectrum of Na2MoO4 using the CASTEP code, employing first-principles density functional theory. Through dynamic process analysis, we analysed the vibrational modes and assigned peaks corresponding to experimental infrared (IR) and Raman data. We focused on the vibrational modes associated with Mo and identified that the highest-intensity IR-active peak at 858 cm-1 corresponded to Mo-O bond asymmetric stretching. Therefore, we propose the use of a high-power terahertz laser at ~25 THz to facilitate the separation of Mo from Na2MoO4. Experimental investigations are expected in the future.

5.
Environ Sci Process Impacts ; 26(8): 1360-1372, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38957940

ABSTRACT

This study evaluated the pollution characteristics, spatiotemporal distribution, and ecological risks of eight endocrine-disrupting chemicals (EDCs) in the Minjiang and Tuojiang rivers. Utilizing 3S technology (ArcGIS, remote sensing, GPS) and Fragstats, the research calculated eight landscape pattern indices related to land use types along the Minjiang river and established correlations between landscape factors and EDC distribution through stepwise multiple regression. The results indicated that bisphenol A (BPA) and nonylphenol (NP) were the most concerning EDCs, with detection frequencies of 97-100% and peak concentrations up to 63.35 ng L-1, primarily located in the middle and lower reaches of the Minjiang river and the upper reaches of the Tuojiang river. There was a significant correlation between the spatial distribution of pollutants and landscape patterns, where increased fragmentation, a higher number of patches, and complex patch shapes within a 10-kilometer buffer zone were associated with elevated levels of river pollution. By integrating four classical mathematical models to fit curves for acute and chronic toxicity data of BPA and NP, the findings suggested that BPA posed a higher ecological risk. This interdisciplinary research provided essential theoretical insights for investigating river pollution and its influencing factors, offering a new perspective on simultaneous river pollution control, urban functional zoning, and adjustment of watershed landscape spatial patterns from an urban planning standpoint.


Subject(s)
Endocrine Disruptors , Environmental Monitoring , Rivers , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods , China , Risk Assessment , Phenols/analysis , Benzhydryl Compounds/analysis
6.
Hypertens Res ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769134

ABSTRACT

To investigate the effect of rosuvastatin on gait and balance disorder progression and elucidate the role of cerebrovascular reactivity (CVR) on this effect. From April 2008 to November 2010, 943 hypertensive patients aged ≥60 years were enrolled from the Shandong area of China. Patients were randomized into rosuvastatin and placebo groups. Gait, balance, CVR, fall and stroke were assessed. During an average 72 months of follow-up, the decreasing trends for step length, step speed, and Berg balance scale scores and the increasing trends for step width and chair rising test were slower in the rosuvastatin group when compared to the placebo group. The hazard ratio of incident balance impairment and falls was 0.542 [95% confidence interval (CI) 0.442-0.663] and 0.532 (95% CI 0.408-0.694), respectively, in the rosuvastatin group compared with placebo group. For CVR progression, the cerebrovascular reserve capacity and breath-holding index were increased and the pulsatility index decreased in the rosuvastatin group, while the cerebrovascular reserve capacity and breath-holding index were decreased, and pulsatility index increased in the placebo group. The changes in gait stability and balance function were independently associated with the changes in the CVR. The odds risks of balance impairment and falls were 2.178 (95% CI: 1.491-3.181) and 3.227 (95% CI: 1.634-6.373), respectively, in the patients with CVR impairment and patients without CVR impairment. Rosuvastatin ameliorated gait and balance disorder progression in older patients with hypertension. This effect might result from the improvement in the CVR. This double-blind clinical trial recruited 943 hypertensive patients aged ≥60 years who were randomly administered rosuvastatin and placebo interventions. The data indicates that rosuvastatin significantly ameliorated the progressions of gait and balance disorders in older hypertensive patients. The cerebrovascular reactivity might play an important mediating role in this amelioration.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 617-624, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660875

ABSTRACT

OBJECTIVE: To establish a mesenchymal stem cell(MSC)-based in vitro cell model for the evaluation of mouse bone marrow acute graft-versus-host disease (aGVHD). METHODS: Female C57BL/6N mice aged 6-8 weeks were used as bone marrow and lymphocyte donors, and female BALB/c mice aged 6-8 weeks were used as aGVHD recipients. The recipient mouse received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) in 6-8 hours post irradiation to establish a bone marrow transplantation (BMT) mouse model (n=20). In addition, the recipient mice received a lethal dose (8.0 Gy,72.76 cGy/min) of total body γ irradiation, and injected with donor mouse derived bone marrow cells (1×107/mouse) and spleen lymphocytes (2×106/mouse) in 6-8 hours post irradiation to establish a mouse aGVHD model (n=20). On the day 7 after modeling, the recipient mice were anesthetized and the blood was harvested post eyeball enucleation. The serum was collected by centrifugation. Mouse MSCs were isolated and cultured with the addition of 2%, 5%, and 10% recipient serum from BMT group or aGVHD group respectively. The colony-forming unit-fibroblast(CFU-F) experiment was performed to evaluate the potential effects of serums on the self-renewal ability of MSC. The expression of CD29 and CD105 of MSC was evaluated by immunofluorescence staining. In addition, the expression of self-renewal-related genes including Oct-4, Sox-2, and Nanog in MSC was detected by real-time fluorescence quantitative PCR(RT-qPCR). RESULTS: We successfully established an in vitro cell model that could mimic the bone marrow microenvironment damage of the mouse with aGVHD. CFU-F assay showed that, on day 7 after the culture, compared with the BMT group, MSC colony formation ability of aGVHD serum concentrations groups of 2% and 5% was significantly reduced (P < 0.05); after the culture, at day 14, compared with the BMT group, MSC colony formation ability in different aGVHD serum concentration was significantly reduced (P < 0.05). The immunofluorescence staining showed that, compared with the BMT group, the proportion of MSC surface molecules CD29+ and CD105+ cells was significantly dereased in the aGVHD serum concentration group (P < 0.05), the most significant difference was at a serum concentration of 10% (P < 0.001, P < 0.01). The results of RT-qPCR detection showed that the expression of the MSC self-renewal-related genes Oct-4, Sox-2, and Nanog was decreased, the most significant difference was observed at an aGVHD serum concentration of 10% (P < 0.01,P < 0.001,P < 0.001). CONCLUSION: By co-culturing different concentrations of mouse aGVHD serum and mouse MSC, we found that the addition of mouse aGVHD serum at different concentrations impaired the MSC self-renewal ability, which providing a new tool for the field of aGVHD bone marrow microenvironment damage.


Subject(s)
Bone Marrow Transplantation , Disease Models, Animal , Graft vs Host Disease , Mesenchymal Stem Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Animals , Mice , Female , Mesenchymal Stem Cells/cytology , Bone Marrow Cells/cytology , Cellular Microenvironment , Bone Marrow , Rats
8.
Proc Natl Acad Sci U S A ; 121(14): e2302967120, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547063

ABSTRACT

It is well-known that highly reactive hydroxyl radicals (HO•) can be produced by the classic Fenton system and our recently discovered haloquinone/H2O2 system, but rarely from thiol-derivatives. Here, we found, unexpectedly, that HO• can be generated from H2O2 and thiourea dioxide (TUO2), a widely used and environmentally friendly bleaching agent. A carbon-centered radical and sulfite were detected and identified as the transient intermediates, and urea and sulfate as the final products, with the complementary application of electron spin-trapping, oxygen-18 isotope labeling coupled with HPLC/MS analysis. Density functional theory calculations were conducted to further elucidate the detailed pathways for HO• production. Taken together, we proposed that the molecular mechanism for HO• generation by TUO2/H2O2: TUO2 tautomerizes from sulfinic acid into ketone isomer (TUO2-K) through proton transfer, then a nucleophilic addition of H2O2 on the S atom of TUO2-K, forming a S-hydroperoxide intermediate TUO2-OOH, which dissociates homolytically to produce HO•. Our findings represent the first experimental and computational study on an unprecedented new molecular mechanism of HO• production from simple thiol-derived sulfinic acids, which may have broad chemical, environmental, and biomedical significance for future research on the application of the well-known bleaching agent and its analogs.

9.
Mol Ther ; 32(4): 1110-1124, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38341612

ABSTRACT

Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.


Subject(s)
Carcinoma, Hepatocellular , MicroRNAs , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Carcinoma, Hepatocellular/pathology , Signal Transduction/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , Cell Line, Tumor , Tumor Microenvironment/genetics
10.
Bioact Mater ; 34: 204-220, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38235309

ABSTRACT

Skeletal stem cells (SSC) have gained attentions as candidates for the treatment of osteoarthritis due to their osteochondrogenic capacity. However, the immunomodulatory properties of SSC, especially under delivery operations, have been largely ignored. In the study, we found that Pdpn+ and Grem1+ SSC subpopulations owned immunoregulatory potential, and the single-cell RNA sequencing (scRNA-seq) data suggested that the mechanical activation of microgel carriers on SSC induced the generation of Pdpn+Grem1+Ptgs2+ SSC subpopulation, which was potent at suppressing macrophage inflammation. The microgel carriers promoted the YAP nuclear translocation, and the activated YAP protein was necessary for the increased expression of Ptgs2 and PGE2 in microgels-delivered SSC, which further suppressed the expression of TNF-ɑ, IL-1ß and promoted the expression of IL-10 in macrophages. SSC delivered with microgels yielded better preventive effects on articular lesions and macrophage activation in osteoarthritic rats than SSC without microgels. Chemically blocking the YAP and Ptgs2 in microgels-delivered SSC partially abolished the enhanced protection on articular tissues and suppression on osteoarthritic macrophages. Moreover, microgel carriers significantly prolonged SSC retention time in vivo without increasing SSC implanting into osteoarthritic joints. Together, our study demonstrated that microgel carriers enhanced SSC reprogramming towards immunomodulatory phenotype to regulate macrophage phenotype transformation for effectively osteoarthritic therapy by promoting YAP protein translocation into nucleus. The study not only complement and perfect the immunological mechanisms of SSC-based therapy at the single-cell level, but also provide new insight for microgel carriers in stem cell-based therapy.

11.
Medicine (Baltimore) ; 103(2): e36518, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215105

ABSTRACT

To explore Helicobacter pylori (Hp) infection status and its relationship with lifestyle habits and dietary factors in patients with chronic atrophic gastritis. Six hundred thirty-eight patients with chronic atrophic gastritis, who were admitted to our hospital from March 2021 to April 2023, were selected for the study. All patients underwent the 13C urea breath test. The relationship between the detection rate of Hp infection and the clinical characteristics, lifestyle habits, and dietary factors of the patients was analyzed. Among the 638 patients with chronic atrophic gastritis, 531 patients were tested positive for Hp infection, the positive rate for Hp infection was approximately 83.23%. Analyzing the clinical characteristics of the patients, it was found that age, family history of gastric cancer, degree of chronic inflammation, degree of glandular atrophy, presence of low-grade dysplasia, and intestinal metaplasia all have an impact on the positive detection rate of patients (P < .05). Analyzing the patients' lifestyle habits, it was found that BMI, smoking history, alcohol consumption, preference for spicy food, dining location, consumption of pickled foods, frequent consumption of grilled/barbecued foods, preference for strong tea, consumption of sweets, and work-related stress had an impact on the positive rate of Hp infection in patients (P < .05). The discovery showed that the levels of total protein, albumin, hemoglobin, cholesterol, and the intake of livestock and poultry meat, seafood, dairy products, vegetables, fruits, and fats have an impact on the positivity rate of Hp infection in patients (P < .05). A multiple logistic regression analysis was performed, and it was found that patients' age, family history of gastric cancer, degree of chronic inflammation, degree of glandular atrophy, presence of low-grade dysplasia, presence of wasting or obesity, history of alcohol consumption, preference for spicy food, dining location, frequent consumption of strong tea, high work pressure, high intake of fish and seafood, low intake of dairy products, low intake of vegetables, low intake of fruits, and low intake of fats all had an impact on the occurrence of Hp infection in patients (P < .05). There is a certain correlation between patients' lifestyle habits, dietary factors, and clinical characteristics with the occurrence of Hp infection. These factors can assist in the prevention of Hp infection.


Subject(s)
Gastritis, Atrophic , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Gastritis, Atrophic/epidemiology , Gastritis, Atrophic/drug therapy , Helicobacter Infections/drug therapy , Stomach Neoplasms/pathology , Retrospective Studies , Inflammation/pathology , Eating , Atrophy , Habits , Tea , Gastric Mucosa/pathology
12.
Cancer Res ; 84(6): 841-854, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38231484

ABSTRACT

Triggering ferroptosis, an iron-dependent form of cell death, has recently emerged as an approach for treating cancer. A better understanding of the role and regulation of ferroptosis is needed to realize the potential of this therapeutic strategy. Here, we observed extensive activation of ferroptosis in hepatoma cells and human hepatocellular carcinoma (HCC) cases. Patients with low to moderate activation of ferroptosis in tumors had the highest risk of recurrence compared to patients with no or high ferroptosis. Upon encountering ferroptotic liver cancer cells, aggregated macrophages efficiently secreted proinflammatory IL1ß to trigger neutrophil-mediated sinusoidal vascular remodeling, thereby creating favorable conditions for aggressive tumor growth and lung metastasis. Mechanistically, hyaluronan fragments released by cancer cells acted via an NF-κB-dependent pathway to upregulate IL1ß precursors and the NLRP3 inflammasome in macrophages, and oxidized phospholipids secreted by ferroptotic cells activated the NLRP3 inflammasome to release functional IL1ß. Depleting either macrophages or neutrophils or neutralizing IL1ß in vivo effectively abrogated ferroptosis-mediated liver cancer growth and lung metastasis. More importantly, the ferroptosis-elicited inflammatory cellular network served as a negative feedback mechanism that led to therapeutic resistance to sorafenib in HCC. Targeting the ferroptosis-induced inflammatory axis significantly improved the therapeutic efficacy of sorafenib in vivo. Together, this study identified a role for ferroptosis in promoting HCC by triggering a macrophage/IL1ß/neutrophil/vasculature axis. SIGNIFICANCE: Ferroptosis induces a favorable tumor microenvironment and supports liver cancer progression by stimulating an inflammatory cellular network that can be targeted to suppress metastasis and improve the efficacy of sorafenib.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Lung Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Sorafenib/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammasomes , Liver Neoplasms/drug therapy , Inflammation/drug therapy , Lung Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
13.
Ther Apher Dial ; 28(2): 255-264, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37873689

ABSTRACT

INTRODUCTION: To assess the relationship between the rate of residual renal function (RRF) decline in the first year and all-cause and cardiovascular mortality in peritoneal dialysis (PD) patients. METHODS: Incident PD patients were divided into two groups by the corresponding RRF decline value, when hazard ratio (HR) = 1 was found by the restricted cubic spline. The associations of rate of decline of RRF in the first year with mortality were evaluated. RESULTS: Of 497 PD patients, 122 patients died. After adjusting for confounding factors, patients in fast-decline group had a significant increase risk of all-cause and cardiovascular mortality (HR: 1.97 and 2.09, respectively). Each 0.1-mL/min/1.73 m2 /month decrease in RRF in the first year of PD was associated with a 19% and 20% higher risk of all-cause and cardiovascular mortality, respectively. CONCLUSIONS: Faster decline of RRF in the first year was independently associated with all-cause and cardiovascular mortality in PD patients.


Subject(s)
Cardiovascular Diseases , Kidney Failure, Chronic , Peritoneal Dialysis , Humans , Glomerular Filtration Rate , Kidney , Cardiovascular Diseases/epidemiology
14.
Toxicol Appl Pharmacol ; 482: 116765, 2024 01.
Article in English | MEDLINE | ID: mdl-37995810

ABSTRACT

CBL0137, a promising small molecular anti-cancer drug candidate, has been found to effectively induce apoptosis via activating p53 and suppressing nuclear factor-kappa B (NF-κB). However, it is still not clear whether CBL0137 can induce necroptosis in liver cancer; and if so, what is the underlying molecular mechanism. Here we found that CBL0137 could significantly induce left-handed double helix structure Z-DNA formation in HepG2 cells as shown by Z-DNA specific antibody assay, which was further confirmed by observing the expression of Z-DNA binding protein 1 (ZBP1) and adenosine deaminase acting on RNA 1 (ADAR1). Interestingly, we found that caspase inhibition significantly promoted CBL0137-induced necroptosis, which was further supported with the increase of the late apoptosis and necrosis assessed by the flow cytometry. Furthermore, we found that CBL0137 can also induce the expression of the three necroptosis-related proteins: receptor interacting serine/threonine kinase 1 (RIPK1), receptor interacting serine/threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL). Taken together, it was assumed that CBL0137-indued necroptosis in liver cells was due to induction of Z-DNA and ZBP1, which activated RIPK1/RIPK3/MLKL pathway. This represents the first report on the induction of the Z-DNA-mediated necroptosis by CBL0137 in the liver cancer cells, which should provide new perspectives for CBL0137 treatment of liver cancer.


Subject(s)
Antineoplastic Agents , Carbazoles , DNA, Z-Form , Liver Neoplasms , Humans , Carrier Proteins/metabolism , Necroptosis , Protein Kinases/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Liver Neoplasms/drug therapy , Protein Serine-Threonine Kinases/metabolism , Serine
15.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964640

ABSTRACT

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Subject(s)
Rosa , Rosa/genetics , Rosa/metabolism , Ascorbic Acid/metabolism , Genes, Plant , Chromosomes , Evolution, Molecular
16.
Stem Cells ; 42(4): 360-373, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38153253

ABSTRACT

Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.


Subject(s)
Osteoarthritis , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Humans , Rats , Necroptosis , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/therapy , Osteoblasts/metabolism , Osteoblasts/pathology , Stem Cells/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/pharmacology
17.
Arch Biochem Biophys ; 748: 109770, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37783367

ABSTRACT

Angiotensin receptor blockers (ARBs) have been reported to be beneficial of renal fibrosis, but the molecular and cellular mechanisms are still unclear. In this study, we investigated the effectiveness and relevant mechanism of ARBs in alleviating renal fibrosis, especially by focusing on biomechanical stress-induced epithelial to mesenchymal transition (EMT) of renal epithelial cells. Unilateral ureteral obstruction (UUO) renal fibrosis model was established in mice by ligating the left ureter, and then randomly received losartan at a low dose (1 mg/kg) or a regular dose (3 mg/kg) for 2 weeks. Compared to the control, histological analysis showed that losartan treatment at either a low dose or a regular dose effectively attenuated renal fibrosis in the UUO model. To further understand the mechanism, we ex vivo loaded primary human renal epithelial cells to 50 mmHg hydrostatic pressure. Western blot and immunostaining analyses indicated that the loading to 50 mmHg hydrostatic pressure for 24 h significantly upregulated vimentin, ß-catenin and α-SMA, but downregulated E-cadherin in renal epithelial cells, suggesting the EMT. The addition of 10 or 100 nM losartan in medium effectively attenuated the EMT of renal epithelial cells induced by 50 mmHg hydrostatic pressure loading. Our in vivo and ex vivo experimental data suggest that losartan treatment, even at a low dose can effectively alleviate renal fibrosis in mouse UUO model, at least partly by inhibiting the biomechanical stress-induced EMT of renal epithelial cells. A low dose of ARBs may repurpose for renal fibrosis treatment.


Subject(s)
Kidney Diseases , Ureteral Obstruction , Humans , Mice , Animals , Epithelial-Mesenchymal Transition , Losartan/pharmacology , Losartan/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Kidney Diseases/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Epithelial Cells/pathology , Fibrosis , Transforming Growth Factor beta1/pharmacology
18.
Article in English | MEDLINE | ID: mdl-37851554

ABSTRACT

Electronic Health Record (EHR) is the digital form of patient visits containing various medical data, including diagnosis, treatment, and lab events. Representation learning of EHR with deep learning methods has been beneficial for patient-related prediction tasks. Recently, studies have focused on revealing the inherent graph structure between medical events in EHR. Graph neural network (GNN) methods are prevalent and perform well in various prediction tasks. However, the inherent relationships between various medical events must be marked, which is complicated and time-consuming. Most research works adopt the straightforward structure of GNN models on a single prediction task which could not fully exploit the potential of EHR representations. Compared with previous work, the multi-task prediction could utilize the latent information of concealed correlations between different prediction tasks. In addition, self-contrastive learning on graphs could improve the representation learned by GNN. We propose a multi-gate mixture of multi-view graph contrastive learning (MMMGCL) method, aiming to get a more reasonable EHR representation and improve the performances of downstream tasks. First, each patient visit is represented as a graph with a well-designed hierarchically fully-connected pattern. Second, node features in the manually constructed graph are pre-trained via the Glove method with hierarchical ontology knowledge. Finally, MMMGCL processes the pre-trained graph and adopts a joint learning strategy to simultaneously optimize task and contrastive losses. We verify our method on two large open-source medical datasets, Medical Information Mart for Intensive Care (MIMIC-III) and the eICU Collaborative Research Database (eICU). Experiment results show that our method could improve performance compared to straightforward graph-based methods on prediction tasks of patient readmission, mortality, and length of stay.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1588-1593, 2023.
Article in Chinese | MEDLINE | ID: mdl-37846722

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) is one of the effective options for the treatment of irradiation-induced injury on hematopoiesis, malignant hematological diseases, and numerous benign severe hematopathy. However, the cellular composition of the graft for HSCT, as well as the significant events of transplanted HSCs in receipients including HSC homing, engraftment, differentiation, remains to be further elucidated. In recent years, with advances in single-cell techniques, the hematopoiesis has been decoding at single cell scale. In addition, single-cell RNA sequencing (scRNA-seq) has been used in the evaluation of hematopoietic dynamics post HSCT, which may be helpful to improve HSCT protocols and clinical outcomes. Hence, the recent advances of evaluating HSCT at single cell scale and the directions worthy paying attention to in the field have been reviewed briefly.

20.
Stem Cell Res Ther ; 14(1): 253, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37752608

ABSTRACT

BACKGROUND: Though articular cartilage stem cell (ACSC)-based therapies have been demonstrated to be a promising option in the treatment of diseased joints, the wide variety of cell isolation, the unknown therapeutic targets, and the incomplete understanding of the interactions of ACSCs with diseased microenvironments have limited the applications of ACSCs. METHODS: In this study, the human ACSCs have been isolated from osteoarthritic articular cartilage by advantage of selection of anatomical location, the migratory property of the cells, and the combination of traumatic injury, mechanical stimuli and enzymatic digestion. The protective effects of ACSC infusion into osteoarthritis (OA) rat knees on osteochondral tissues were evaluated using micro-CT and pathological analyses. Moreover, the regulation of ACSCs on osteoarthritic osteoclasts and the underlying mechanisms in vivo and in vitro were explored by RNA-sequencing, pathological analyses and functional gain and loss experiments. The one-way ANOVA was used in multiple group data analysis. RESULTS: The ACSCs showed typical stem cell-like characteristics including colony formation and committed osteo-chondrogenic capacity. In addition, intra-articular injection into knee joints yielded significant improvement on the abnormal subchondral bone remodeling of osteoarthritic rats. Bioinformatic and functional analysis showed that ACSCs suppressed osteoarthritic osteoclasts formation, and inflammatory joint microenvironment augmented the inhibitory effects. Further explorations demonstrated that ACSC-derived tumor necrosis factor alpha-induced protein 3 (TNFAIP3) remarkably contributed to the inhibition on osteoarhtritic osteoclasts and the improvement of abnormal subchondral bone remodeling. CONCLUSION: In summary, we have reported an easy and reproducible human ACSC isolation strategy and revealed their effects on subchondral bone remodeling in OA rats by releasing TNFAIP3 and suppressing osteoclasts in a diseased microenvironment responsive manner.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Humans , Animals , Rats , Osteoarthritis, Knee/therapy , Osteoclasts , Tumor Necrosis Factor alpha-Induced Protein 3 , Stem Cells , Bone Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL