Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Front Aging Neurosci ; 16: 1392304, 2024.
Article in English | MEDLINE | ID: mdl-38863782

ABSTRACT

Background: Age-related decline in cognitive function is often linked to changed prefrontal cortex (PFC) activity and heart rate variability (HRV). Mild cognitive impairment (MCI), a transitional stage between normal aging and dementia, might have further degeneration beyond aging. This study aimed to investigate the differences between young and older adults with or without MCI in cognitive functions, task-induced PFC activation and HRV changes. Methods: Thirty-one healthy young adults (YA), 44 older adults (OA), and 28 older adults with MCI (OA-MCI) were enrolled and compared in this cross-sectional study. Each participant received a one-time assessment including cognitive and executive functions, as well as the simultaneous recording of PFC activity and HRV during a cognitive task paradigm. Results: We observed age-related decrease in global cognitive functions, executive functions, HRV, and increase in PFC activity. The MCI further deteriorated the global cognitive and executive performances, but not the HRV or the prefrontal activation. Conclusion: Older people showed lower performances in general cognitive function and executive function, compensatory increase of PFC activity, and reduced HRV. Older people with MCI had further deterioration in cognitive performance, but not in PFC activation and HRV.

2.
Langmuir ; 40(26): 13721-13727, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38899455

ABSTRACT

Optical tweezers (OT) have evolved into powerful single molecule force spectroscopy tools to investigate protein folding-unfolding dynamics. To stretch a protein of interest using OT, the protein must be flanked with two double stranded DNA (dsDNA) handles. However, coupling dsDNA handles to the protein is often of low yield, representing a bottleneck in OT experiments. Here, we report a handle-free, all-protein-based OT method for investigating protein folding/unfolding dynamics. In this new method, we employed disordered elastin-like polypeptides (ELPs) as a molecular linker and the mechanically stable cohesin-dockerin (Coh-Doc) pair as the prey-bait system to enable the efficient capture and stretching of individual protein molecules. This novel approach was validated by using model proteins NuG2 and RTX-v, yielding experimental results comparable to those obtained by using the dsDNA handle approach. This new method provides a streamlined and efficient OT approach to investigate the folding-unfolding dynamics of proteins at the single molecule level, thus expanding the toolbox of OT-based single molecule force spectroscopy.


Subject(s)
Optical Tweezers , Protein Folding , DNA/chemistry , Protein Unfolding , Peptides/chemistry , Proteins/chemistry
3.
Science ; 384(6695): 557-563, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696573

ABSTRACT

Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.

4.
Foods ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38790808

ABSTRACT

α-Dicarbonyl compounds (α-DCs) are commonly present in various foods. We conducted the investigation into concentration changes of α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) in fresh fruits and decapped commercial juices during storage at room temperature and 4 °C, as well as in homemade juices during storage at 4 °C. The studies indicate the presence of α-DCs in all samples. The initial contents of 3-DG in the commercial juices (6.74 to 65.61 µg/mL) are higher than those in the homemade ones (1.97 to 4.65 µg/mL) as well as fruits (1.58 to 3.33 µg/g). The initial concentrations of GO and MGO are normally less than 1 µg/mL in all samples. During storage, the α-DC levels in the fruits exhibit an initial increase followed by a subsequent decrease, whereas, in all juices, they tend to accumulate continuously over time. As expected, 4 °C storage reduces the increase rates of the α-DC concentrations in most samples. From the viewpoint of the α-DC contents, fruits and homemade juices should always be the first choice for daily intake of nutrients and commercial juices ought to be mostly avoided.

5.
Sci Adv ; 10(14): eadk0647, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569023

ABSTRACT

Conjugated polymers have demonstrated promising optoelectronic properties, but their brittleness and poor mechanical characteristics have hindered their fabrication into durable fibers and textiles. Here, we report a universal approach to continuously producing highly strong, ultratough conjugated polymer fibers using a flow-enhanced crystallization (FLEX) method. These fibers exhibit one order of magnitude higher tensile strength (>200 megapascals) and toughness (>80 megajoules per cubic meter) than traditional semiconducting polymer fibers and films, outperforming many synthetic fibers, ready for scalable production. These fibers also exhibit unique strain-enhanced electronic properties and exceptional performance when used as stretchable conductors, thermoelectrics, transistors, and sensors. This work not only highlights the influence of fluid mechanical effects on the crystallization and mechanical properties of conjugated polymers but also opens up exciting possibilities for integrating these functional fibers into wearable electronics.

6.
Micromachines (Basel) ; 15(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38675318

ABSTRACT

Arterial stiffness has been proved to be an important parameter in the evaluation of cardiovascular diseases, and Pulse Wave Velocity (PWV) is a strong indicator of arterial stiffness. Compared to regional PWV (PWV among different arteries), local PWV (PWV within a single artery) outstands in providing higher precision in indicating arterial properties, as regional PWVs are highly affected by multiple parameters, e.g., variations in blood vessel lengths due to individual differences, and multiple reflection effects on the pulse waveform. However, local PWV is less-developed due to its high dependency on the temporal resolution in synchronized signals with usually low signal-to-noise ratios. This paper presents a method for the noninvasive simultaneous measurement of two local PWVs in both left and right radial arteries based on the Fiber Bragg Grating (FBG) technique via correlation analysis of the pulse pairs at the fossa cubitalis and at the wrist. Based on the measurements of five male volunteers at the ages of 19 to 21 years old, the average left radial PWV ranged from 9.44 m/s to 12.35 m/s and the average right radial PWV ranged from 11.50 m/s to 14.83 m/s. What is worth mentioning is that a stable difference between the left and right radial PWVs was observed for each volunteer, ranging from 2.27 m/s to 3.04 m/s. This method enables the dynamic analysis of local PWVs and analysis of their features among different arteries, which will benefit the diagnosis of early-stage arterial stiffening and may bring more insights into the diagnosis of cardiovascular diseases.

7.
Adv Mater ; 36(24): e2400287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433667

ABSTRACT

Organic electrochemical transistors (OECTs) have attracted increasing attention due to their merits of high transconductance, low operating voltage, and good biocompatibility, ideal for biosensors. However, further advances in their practical applications face challenges of low n-type performance and poor stability. Here, it is demonstrated that wet-spinning the commercially available n-type conjugated polymer poly(benzimidazobenzophenanthroline) (BBL) into highly aligned and crystalline fibers enhances both OECT performance and stability. Although BBL is only soluble in high-boiling-point strong acids, it can be wet-spun into high-quality fibers with adjustable diameters. The BBL fiber OECTs exhibit a record-high area-normalized transconductance (gm,A) of 2.40 µS µm-2 and over 10 times higher figure-of-merit (µC*) than its thin-film counterparts. More importantly, these fiber OECTs exhibit remarkable stability with no noticeable performance attenuation after 1500 cycles over 4 h operation, outperforming all previously reported n-type OECTs. The superior performance and stability can be attributed to shorter π-π stacking distance and ordered molecular arrangement in the fibers, endowing the BBL fiber OECT-based biosensors with outstanding sensitivity while keeping a miniaturized form factor. This work demonstrates that, beyond new material development, developing new fabrication technology is also crucial for addressing the performance and stability issues in n-type OECTs.

8.
Angew Chem Int Ed Engl ; 63(6): e202313260, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37938169

ABSTRACT

Conjugated polymers that can efficiently transport both ionic and electronic charges have broad applications in next-generation optoelectronic, bioelectronic, and energy storage devices. To date, almost all the conjugated polymers have hydrophobic backbones, which impedes efficient ion diffusion/transport in aqueous media. Here, we design and synthesize a novel hydrophilic polymer building block, 4a-azonia-naphthalene (AN), drawing inspiration from biological systems. Because of the strong electron-withdrawing ability of AN, the AN-based polymers show typical n-type charge transport behaviors. We find that cationic aromatics exhibit strong cation-π interactions, leading to smaller π-π stacking distance, interesting ion diffusion behavior, and good morphology stability. Additionally, AN enhances the hydrophilicity and ionic-electronic coupling of the polymer, which can help to improve ion diffusion/injection speed, and operational stability of organic electrochemical transistors (OECTs). The integration of cationic building blocks will undoubtedly enrich the material library for high-performance n-type conjugated polymers.

9.
Food Res Int ; 172: 113170, 2023 10.
Article in English | MEDLINE | ID: mdl-37689923

ABSTRACT

This review presents a survey of two extremely important technologies about CO2 with the effectiveness of controlling microorganisms - atmospheric pressure CO2-based modified atmosphere packaging (MAP) and high pressure CO2 non-thermal pasteurization (HPCD). CO2-based MAP is effectively in delaying the lag and logarithmic phases of microorganisms by replacing the surrounding air, while HPCD achieved sterilization by subjecting food to either subcritical or supercritical CO2 for some time in a continuous, batch or semi-batch way. In addition to the advantages of healthy, eco-friendly, quality-preserving, effective characteristic, some challenges such as the high drip loss and packaging collapse associated with higher concentration of CO2, the fuzzy mechanisms of oxidative stress, the unproven specific metabolic pathways and biomarkers, etc., in CO2-based MAP, and the unavoidable extraction of bioactive compounds, the challenging application in solid foods with higher efficiency, the difficult balance between optimal sterilization and optimal food quality, etc., in HPCD still need more efforts to overcome. The action mechanism of CO2 on microorganisms, researches in recent years, problems and future perspectives are summarized. When dissolved in solution medium or cellular fluids, CO2 can form carbonic acid (H2CO3), and H2CO3 can further dissociate into bicarbonate ions (HCO3-), carbonate (CO32-) and hydrogen cations (H+) ionic species following series equilibria. The action mode of CO2 on microorganisms may be relevant to changes in intracellular pH, alteration of proteins, enzyme structure and function, alteration of cell membrane function and fluidity, and so on. Nevertheless, the effects of CO2 on microbial biofilms, energy metabolism, protein and gene expression also need to be explored more extensively and deeply to further understand the action mechanism of CO2 on microorganisms.


Subject(s)
Atmospheric Pressure , Carbon Dioxide , Biofilms , Cell Membrane , Energy Metabolism
10.
Ren Fail ; 45(2): 2258986, 2023.
Article in English | MEDLINE | ID: mdl-37724564

ABSTRACT

BACKGROUND: Renal anemia, a common complication and threat factor of chronic kidney disease (CKD), has long been treated with injectable erythropoietin-stimulating agents (ESAs). As concerns regarding cardiovascular safety and erythropoietin resistance to ESAs have emerged, alternative therapies are urgently needed. Hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), an oral agent, has been proven to be effective in improving renal anemia. However, the effects of HIF-PHIs on nondialysis-dependent CKD (NDD-CKD) have yet to be supported by updated meta-analyses. METHODS: A meta-analysis of clinical randomized controlled trials (RCTs) on HIF-PHI treatment of NDD-CKD patients based on PubMed, EMBASE, and Cochrane databases as of July 16th, 2023, was conducted. The primary outcomes were the level of hemoglobin (Hb) postintervention and the ratio of Hb responses. Most of the analysis was conducted via RevMan 5.3 software using a random-effects model. Stata (version 15.0) was used to analyze the publication bias. RESULTS: Twenty-two studies with a total of 7178 subjects in the HIF-PHI group, 3501 subjects in the ESA group and 2533 subjects in the placebo group were enrolled. HIF-PHIs increased the level of Hb and improved iron metabolism but were not inferior to ESAs in terms of safety. CONCLUSIONS: HIF-PHIs may be a convenient and safe alternative to ESAs in patients with NDD-CKD and anemia.


Subject(s)
Anemia , Erythropoietin , Prolyl-Hydroxylase Inhibitors , Renal Insufficiency, Chronic , Humans , Anemia/drug therapy , Anemia/etiology , Epoetin Alfa , Erythropoietin/adverse effects , Hypoxia , Prolyl Hydroxylases , Prolyl-Hydroxylase Inhibitors/adverse effects , Renal Insufficiency, Chronic/complications
11.
Am J Cancer Res ; 13(3): 1091-1102, 2023.
Article in English | MEDLINE | ID: mdl-37034205

ABSTRACT

Lung cancer is ranked as the leading cause of cancer-related death worldwide, and the development of novel biomarkers is helpful to improve the prognosis of non-small cell lung cancer (NSCLC). Cell-in-cell structures (CICs), a novel functional surrogate of complicated cell behaviors, have shown promise in predicting the prognosis of cancer patients. However, the CIC profiling and its prognostic value remain unclear in NSCLC. In this study, we retrospectively explored the CIC profiling in a cohort of NSCLC tissues by using the "Epithelium-Macrophage-Leukocyte" (EML) method. The distribution of CICs was examined by the Chi-square test, and univariate and multivariate analyses were performed for survival analysis. Four types of CICs were identified in lung cancer tissues, namely, tumor-in-tumor (TiT), tumor-in-macrophage (TiM), lymphocyte-in-tumor (LiT), and macrophage-in-tumor (MiT). Among them, the latter three constituted the heterotypic CICs (heCICs). Overall, CICs were more frequently present in adenocarcinoma than in squamous cell carcinoma (P = 0.009), and LiT was more common in the upper lobe of the lung compared with other lobes (P = 0.020). In univariate analysis, the presence of TiM, heCIC density, TNM stage, T stage, and N stage showed association with the overall survival (OS) of NSCLC patients. Multivariate analysis revealed that heCICs (HR = 2.6, 95% CI 1.25-5.6) and lymph node invasion (HR = 2.6, 95% CI 1.33-5.1) were independent factors associated with the OS of NSCLC. Taken together, we profiled the CIC subtypes in NSCLC for the first time and demonstrated the prognostic value of heCICs, which may serve as a type of novel functional markers along with classical pathological factors in improving prognosis prediction for patients with NSCLC.

12.
Food Chem Toxicol ; 172: 113591, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36581091

ABSTRACT

OBJECTIVE: Acute kidney injury (AKI) is one of common complications of wasp/bee stings. Phospholipase A2 (PLA2) is a vital pathogenic composition of wasp/bee venom. We aimed to investigate the role of complement mediated mitochondrial apoptosis in PLA2 induced AKI. MATERIALS AND METHODS: PLA2 induced AKI model was established by injecting PLA2 into via tail vein on mice. The pathological changes and the microstructural changes of kidney, complement activation, inflammation and apoptosis were detected in vitro and in vivo respectively. RESULTS: The results showed that PLA2 induced AKI models were successfully established in vivo and vitro. Compared with control, serum creatinine and urea nitrogen levels were elevated. Complement system activation and mitochondrial damage were observed. Expressions of IL-6, TNF-α, cleaved caspase-3 and cleaved caspase-9, and Bax/Bcl-2 increased in PLA2 induced AKI models. TNF-α/NF-κB signaling pathway activation in AKI models. CONCLUSION: In the present study, PLA2 induced AKI model was first successfully established to our knowledge. The role of complement mediated mitochondrial apoptosis pathway in renal tubular epithelial cells in PLA2 induced AKI were verified in vitro and vivo.


Subject(s)
Acute Kidney Injury , Insect Bites and Stings , Phospholipases A2 , Animals , Mice , Acute Kidney Injury/metabolism , Apoptosis/physiology , Complement System Proteins/metabolism , Insect Bites and Stings/complications , Insect Bites and Stings/metabolism , Kidney/metabolism , NF-kappa B/metabolism , Phospholipases/metabolism , Phospholipases A2/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
13.
Phys Rev Lett ; 129(21): 210501, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36461974

ABSTRACT

Quantum memories at telecom wavelengths are crucial for the construction of large-scale quantum networks based on existing fiber networks. On-demand storage of telecom photonic qubits is an essential request for such networking applications but yet to be demonstrated. Here we demonstrate the storage and on-demand retrieval of telecom photonic qubits using a laser-written waveguide fabricated in an ^{167}Er^{3+}:Y_{2}SiO_{5} crystal. Both ends of the waveguide memory are directly connected with fiber arrays with a fiber-to-fiber efficiency of 51%. Storage fidelity of 98.3(1)% can be obtained for time-bin qubits encoded with single-photon-level coherent pulses, which is far beyond the maximal fidelity that can be achieved with a classical measure and prepared strategy. This device features high reliability and easy scalability, and it can be directly integrated into fiber networks, which could play an essential role in fiber-based quantum networks.

14.
Chin Med J (Engl) ; 135(20): 2478-2487, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36583864

ABSTRACT

BACKGROUND: A simplified protocol for regional citrate anticoagulation (RCA) using a commercial calcium-containing replacement solution, without continuous calcium infusion, is more efficient for use in continuous renal replacement therapy (CRRT). We aim to design a randomized clinical trial to compare the safety and efficacy between calcium-free and calcium-containing replacement solutions in CRRT with RCA. METHODS: Of the 64 patients receiving RCA-based postdilution continuous venovenous hemodiafiltration (CVVHDF) enrolled from 2017 to 2019 in West China Hospital of Sichuan University, 35 patients were randomized to the calcium-containing group and 29 to the calcium-free replacement solution group. The primary endpoint was circuit lifespan and Kaplan-Meier survival analysis was performed. Secondary endpoints included hospital mortality, kidney function recovery rate, and complications. The amount of 4% trisodium citrate solution infusion was recorded. Serum and effluent total (tCa) and ionized (iCa) calcium concentrations were measured during CVVHDF. RESULTS: A total of 149 circuits (82 in the calcium-containing group and 67 in the calcium-free group) and 7609 circuit hours (4335 h vs. 3274 h) were included. The mean circuit lifespan was 58.1 h (95% CI 53.8-62.4 h) in the calcium-containing group vs. 55.3 h (95% CI 49.7-60.9 h, log rank P = 0.89) in the calcium-free group. The serum tCa and iCa concentrations were slightly lower in the calcium-containing group during CRRT, whereas the postfilter iCa concentration was lower in the calcium-free group. Moreover, the mean amounts of 4% trisodium citrate solution infusion were not significantly different between the groups (171.1 ±â€Š15.9 mL/h vs. 169.0 ±â€Š15.1 mL/h, P = 0.49). The mortality (14/35 [40%] vs. 13/29 [45%], P = 0.70) and kidney function recovery rates of AKI patients (19/26, 73% vs. 14/24, 58%, P = 0.27) were comparable between the calcium-containing and calcium-free group during hospitalization, respectively. Six (three in each group) patients showed signs of citrate accumulation in this study. CONCLUSIONS: When compared with calcium-free replacement solution, RCA-based CVVHDF with calcium-containing replacement solution had a similar circuit lifespan, hospital mortality and kidney outcome. Since the calcium-containing solution obviates the need for a separate venous catheter and a large dose of intravenous calcium solution preparation for continuous calcium supplementation, it is more convenient to be applied in RCA-CRRT practice. REGISTRATION: Chinese Clinical Trial Registry (www.chictr.org.cn, ChiCTR-IPR-17012629).


Subject(s)
Citric Acid , Continuous Renal Replacement Therapy , Humans , Citric Acid/therapeutic use , Anticoagulants/therapeutic use , Calcium/therapeutic use , Citrates/therapeutic use , Renal Replacement Therapy
15.
Nat Commun ; 13(1): 5970, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36216813

ABSTRACT

High-performance n-type organic electrochemical transistors (OECTs) are essential for logic circuits and sensors. However, the performances of n-type OECTs lag far behind that of p-type ones. Conventional wisdom posits that the LUMO energy level dictates the n-type performance. Herein, we show that engineering the doped state is more critical for n-type OECT polymers. By balancing more charges to the donor moiety, we could effectively switch a p-type polymer to high-performance n-type material. Based on this concept, the polymer, P(gTDPP2FT), exhibits a record high n-type OECT performance with µC* of 54.8 F cm-1 V-1 s-1, mobility of 0.35 cm2 V-1 s-1, and response speed of τon/τoff = 1.75/0.15 ms. Calculations and comparison studies show that the conversion is primarily due to the more uniform charges, stabilized negative polaron, enhanced conformation, and backbone planarity at negatively charged states. Our work highlights the critical role of understanding and engineering polymers' doped states.

16.
Food Res Int ; 161: 111781, 2022 11.
Article in English | MEDLINE | ID: mdl-36192877

ABSTRACT

Shewanella putrefaciens (S. putrefaciens), which is a common specific spoilage organism (SSO) of marine fish, has strong spoilage ability even under low-temperature conditions. Carbon dioxide (CO2) was widely applied to control microorganisms in aquatic products package. To explore the regulation mechanism of CO2 on biofilm formation and cell properties of S. putrefaciens, the dynamic formation process of biofilms, cellular surface properties, and cellular metabolic characteristics of S. putrefaciens at both 30 °C and 4 °C in pure CO2 gas were evaluated. As evidenced by the crystal violet staining method, confocal laser scanning microscopy (CLSM) analysis, and field emission scanning electron microscopy (FESEM) observation, dynamic formation process of S. putrefaciens biofilms was apparently delayed by CO2 with integral cellular morphology. The number and viability of sessile cells in S. putrefaciens biofilms was significantly lower than those in normal air composition. The changes in cellular surface properties, such as decreased auto-aggregation and hydrophobicity, might be one of the reasons why biofilms were inhibited by CO2. Inhibition of swimming and swarming motility ability by CO2 could also be observed with significantly shorter bacterial halo diameter. What's more, cellular metabolism was significantly decreased by CO2 according to the results of ATP content, ATPase activity and extracellular proteolytic activity. The influence of CO2 could be both observed whether combined with 30 °C or 4 °C. However, the inhibition produced by CO2 was more pronounced at the incubation temperature of 4 °C. In summary, it could be concluded that the dynamic formation process of S. putrefaciens biofilms and cellular metabolic properties could be inhibited by CO2. This research provided a theoretical basis for better application of CO2 to regulate spoilage microorganisms.


Subject(s)
Shewanella putrefaciens , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Biofilms , Carbon Dioxide/metabolism , Gentian Violet/metabolism
17.
Nutrients ; 14(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889910

ABSTRACT

Plasma transthyretin may be engaged in glucose regulation. We aimed to investigate the association between plasma transthyretin levels and the risk of newly diagnosed T2DM and impaired glucose regulation (IGR) in a Chinese population. We conducted a case-control study including 1244 newly diagnosed T2DM patients, 837 newly diagnosed IGR patients, and 1244 individuals with normal glucose tolerance (NGT) matched by sex and age. Multivariate logistic regression analysis was utilized to estimate the independent association of plasma transthyretin concentrations with the risk of T2DM and IGR. Plasma transthyretin concentrations were significantly higher in T2DM and IGR patients compared with control subjects (p < 0.005). After multiple adjustment and comparison with the lowest quartile of plasma transthyretin concentrations, the odds ratios (95% confidence intervals) of T2DM and IGR in the highest quartile were 2.22 (1.66, 2.98) and 2.29 (1.72, 3.05), respectively. Plasma transthyretin concentrations also showed a great performance in predicting the risk of T2DM (AUC: 0.76). Moreover, a potential nonlinear trend was observed. Our results demonstrated that higher plasma transthyretin concentrations, especially more than 290 mg/L, were associated with an increased risk of T2DM and IGR. Further studies are warranted to confirm our findings and elucidate the potential mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Blood Glucose/analysis , Case-Control Studies , China/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Glucose , Glucose Intolerance/epidemiology , Humans , Prealbumin/analysis
18.
Sensors (Basel) ; 22(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35890770

ABSTRACT

When approaching and removing a disabled satellite, the accuracy of the controller is imperative to the success of the mission because if the mission fails, more space debris can be produced due to satellite collision. To address this issue, a controller directly driven by discrete sample data points is proposed in this paper. First, the input vector for the controller is placed into a state space as a point. The state space also contains points constructed by the input vectors of pre-generated samples, which are created by the GPOPS planning algorithm along with control commands as sample output vectors. Then, an adjacent range is selected and the sample points within are collected. To accelerate the process, a series of data processing methods are implemented, including the dichotomy method, table look-up method, and random selection method. Finally, the control commands are computed using the iteratively reweighted least-squares algorithm with the assumption that similar inputs have similar outputs. According to the simulation results, the discrete point controller is more precise than the neural network controller.

19.
Food Chem ; 397: 133748, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35905618

ABSTRACT

To investigate the regulation mechanism of CO2 (0% CO2, 20% CO2, 60% CO2, and 100% CO2) on the spoilage potential of S. putrefaciens target to flavour compounds, the metabolic activity of S. putrefaciens and the changes in flavour compounds extracted from inoculated large yellow croakers were evaluated. Results showed that CO2 significantly reduced biofilm formation capacity and suppressed synthesis of intracellular adenosine triphosphate (ATP). The production of unpleasant flavour compounds, such as total volatile basic nitrogen (TVB-N), trimethylamine (TMA), inosine (HxR), hypoxanthine (Hx), histidine, lysine, histamine, putrescine, 1-octen-3-ol, hexanal and benzaldehyde, was inhibited by CO2. The hydrolysis and oxidation of lipid in CO2-treated samples were alleviated and unsaturated fatty acids (UFAs) were in a higher percentage. In summary, CO2 efficiently reduced the spoilage potential of S. putrefaciens and contributed to better flavour quality of samples during 4 °C storage. A more effective inhibition by 100% CO2 was observed.


Subject(s)
Perciformes , Shewanella putrefaciens , Animals , Carbon Dioxide , Flavoring Agents , Putrescine
20.
Front Nutr ; 9: 836115, 2022.
Article in English | MEDLINE | ID: mdl-35600822

ABSTRACT

Background: Limited studies have explored the difference of fatty acid profile between women with and without gestational diabetes mellitus (GDM), and the results were inconsistent. Individual fatty acids tend to be interrelated because of the shared food sources and metabolic pathways. Thus, whether fatty acid patters during pregnancy were related to GDM odds needs further exploration. Objective: To identify plasma fatty acid patters during pregnancy and their associations with odds of GDM. Methods: A hospital-based case-control study including 217 GDM cases and 217 matched controls was carried out in urban Wuhan, China from August 2012 to April 2015. All the participants were enrolled at the time of GDM screening and provided fasting blood samples with informed consent. We measured plasma concentrations of fatty acids by gas chromatography-mass spectrometry, and derived potential fatty acid patterns (FAPs) through principal components analysis. Conditional logistic regression and restricted cubic spline model were used to evaluate the associations between individual fatty acids or FAPs and odds of GDM. Results: Twenty individual fatty acids with relative concentrations ≥0.05% were included in the analyses. Compared with control group, GDM group had significantly higher concentrations of total fatty acids, 24:1n-9, and relatively lower levels of 14:0, 15:0, 17:0, 18:0, 24:0, 16:1n-7, 20:1n-9,18:3n-6, 20:2n-6, 18:3n-3, 20:3n-3, 22:5n-3. Two novel patterns of fatty acids were identified to be associated with lower odds of GDM: (1) relatively higher odd-chain fatty acids, 14:0, 18:0, 18:3n-3, 20:2n-6, 20:3n-6 and lower 24:1n-9 and 18:2n-6 [adjusted odds ratio (OR) (95% confidence interval) (CI) for quartiles 4 vs. 1: 0.42 (0.23-0.76), P-trend = 0.002], (2) relatively higher n-3 polyunsaturated fatty acids, 24:0, 18:3n-6 and lower 16:0 and 20:4n-6 [adjusted OR (95% CI) for quartiles 4 vs. 1: 0.48 (0.26-0.90), P-trend = 0.018]. Conclusion: Our findings suggested that two novel FAPs were inversely associated with GDM odds. The combination of circulating fatty acids could be a more significant marker of GDM development than individual fatty acids or their subgroups.

SELECTION OF CITATIONS
SEARCH DETAIL
...