Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
J Nat Med ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704807

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.

3.
PLoS One ; 19(5): e0289455, 2024.
Article in English | MEDLINE | ID: mdl-38696479

ABSTRACT

BACKGROUND: Studies have confirmed that osteoporosis has been considered as one of the complications of diabetes, and the health hazards to patients are more obvious. This study is mainly based on the Taiwan National Health Insurance Database (TNHID). Through the analysis of TNHID, it is shown that the combined treatment of traditional Chinese medicine (TCM) medicine in patients of diabetes with osteoporosis (T2DOP) with lower related risks. METHODS: According to the study design, 3131 patients selected from TNHID who received TCM treatment were matched by 1-fold propensity score according to gender, age, and inclusion date as the control group. Cox proportional hazards analyzes were performed to compare fracture surgery, hospitalization, and all-cause mortality during a mean follow-up from 2000 to 2015. RESULTS: A total of 1055/1469/715 subjects (16.85%/23.46%/11.42%) had fracture surgery/inpatient/all-cause mortality of which 433/624/318 (13.83%/19.93%/10.16%) were in the TCM group) and 622/845/397 (19.87%/26.99%/12.68%) in the control group. Cox proportional hazards regression analysis showed that subjects in the TCM group had lower rates of fracture surgery, inpatient and all-cause mortality (adjusted HR = 0.467; 95% CI = 0.225-0.680, P<0.001; adjusted HR = 0.556; 95% CI = 0.330-0.751, P<0.001; adjusted HR = 0.704; 95% CI = 0.476-0.923, P = 0.012). Kaplan-Meier analysis showed that the cumulative risk of fracture surgery, inpatient and all-cause mortality was significantly different between the case and control groups (all log-rank p<0.001). CONCLUSION: This study provides longitudinal evidence through a cohort study of the value of integrated TCM for T2DOP. More research is needed to fully understand the clinical significance of these results.


Subject(s)
Hospitalization , Medicine, Chinese Traditional , Osteoporosis , Humans , Female , Male , Osteoporosis/mortality , Osteoporosis/complications , Aged , Hospitalization/statistics & numerical data , Middle Aged , Taiwan/epidemiology , Fractures, Bone/mortality , Fractures, Bone/surgery , Proportional Hazards Models , Aged, 80 and over
4.
Ibrain ; 10(1): 93-105, 2024.
Article in English | MEDLINE | ID: mdl-38682022

ABSTRACT

The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.

5.
Front Oncol ; 14: 1384293, 2024.
Article in English | MEDLINE | ID: mdl-38686190

ABSTRACT

Background: A common treatment strategy for individuals with multifocal hepatocellular carcinoma (HCC) who are not candidates for surgical resection is transarterial chemoembolization (TACE). Combining TACE with 125I seed insertion (ISI) may offer a means of enhancing therapeutic efficacy. The purpose of this study was to compare the therapeutic efficacy of TACE administered with and without ISI for the treatment of multifocal HCC. Methods: The data from the two centers were analyzed retrospectively. The present study involved 85 consecutive patients with multifocal HCC who underwent TACE between January 2018 and December 2021. Of these patients, 43 were in the combined group, receiving TACE with ISI, and 42 were in the TACE-only group, receiving TACE without ISI. Comparisons of treatment outcomes were made between these groups. Results: No significant differences in baseline data were observed between these groups of patients. Higher rates of complete (60.5% vs. 33.3%, P = 0.016) and total (93.0% vs. 61.9%, P = 0.001) responses were evident in the combined group compared to the TACE-only group. Median progression-free survival (PFS, 13 vs. 10 months, P = 0.014) and overall survival (OS, 22 vs. 17 months, P = 0.035) were also significantly longer in the combined group than in the TACE-only group. Using a Cox regression analysis, risk variables associated with shorter PFS and OS included Child-Pugh B status (P = 0.027 and 0.004) and only TACE treatment (P = 0.011 and 0.022). Conclusion: In summary, these findings suggest that, as compared to TACE alone, combining TACE and ISI can enhance HCC patients' treatment outcomes and survival.

6.
J Orthop Surg Res ; 19(1): 249, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637795

ABSTRACT

PURPOSE: Preoperative anemia increases postoperative morbidity, mortality, and the risk of allogeneic transfusion. However, the incidence of preoperative anemia in patients undergoing total hip arthroplasty and total knee arthroplasty (TKA) and its relationship to postoperative outcomes has not been previously reported. METHODS: We conducted a comprehensive literature search through PubMed, Cochrane Library, Web of Sincien, and Embase from inception to July 2023 to investigate the prevalence of preoperative anemia in patients undergoing Total Joint Arthroplasty, comorbidities between anemic and non-anemicpatients before surgery, and postoperative outcomes. postoperative outcomes were analyzed. Overall prevalence was calculated using a random-effects model, and heterogeneity between studies was examined by Cochran's Q test and quantified by the I2 statistic. Subgroup analyses and meta-regression analyses were performed to identify sources of heterogeneity. Publication bias was assessed by funnel plots and validated by Egger's test. RESULTS: A total of 21 studies with 369,101 samples were included, all of which were retrospective cohort studies. 3 studies were of high quality and 18 studies were of moderate quality. The results showed that the prevalence of preoperative anemia was 22% in patients awaiting arthroplasty; subgroup analyses revealed that the prevalence of preoperative anemia was highest in patients awaiting revision of total knee arthroplasty; the highest prevalence of preoperative anemia was found in the Americas; preoperative anemia was more prevalent in the female than in the male population; and preoperative anemia with a history of preoperative anemia was more common in the female than in the male population. patients with a history of preoperative anemia; patients with joint replacement who had a history of preoperative anemia had an increased risk of infection, postoperative blood transfusion rate, postoperative blood transfusion, Deep vein thrombosis of the lower limbs, days in hospital, readmission within three months, and mortality compared with patients who did not have preoperative anemia. CONCLUSION: The prevalence of preoperative anemia in patients awaiting total joint arthroplasty is 22%, and is higher in TKA and female patients undergoing revision, while preoperative anemia is detrimental to the patient's postoperative recovery and will increase the risk of postoperative complications, transfusion rates, days in the hospital, readmission rates, and mortality.


Subject(s)
Anemia , Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Humans , Male , Female , Retrospective Studies , Anemia/etiology , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Hip/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Lower Extremity
7.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491012

ABSTRACT

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Luminescence
8.
J Am Chem Soc ; 146(11): 7868-7874, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38457655

ABSTRACT

Sulfate crystals are often criticized for their low birefringence. The small anisotropic SO4 group is becoming the biggest bottleneck hindering the application of sulfates in optical functional materials. In this study, we report a new method to significantly enhance the birefringence of sulfates. The title compound increases the birefringence recording of sulfates to 0.542@546 nm, which is significantly larger than that of the commercial birefringent crystal of TiO2 (0.306@546.1 nm). At the infrared wavelength, the birefringence of Hg4(Te2O5)(SO4) can be up to 0.400@1064 nm, which is also much larger than the infrared birefringent crystal of YVO4 (0.209@1064 nm). In addition, it also has a wide transparency range, high thermal stability, and excellent environmental stability, making it a potential birefringent material. Hg4(Te2O5)(SO4) features a novel two-dimensional layered structure composed of [Hg4(Te2O5)]2+ layers separated by isolated (SO4)2- tetrahedra. This compound was designed by introducing a highly selective cation in a tellurite sulfate system. The low valence low coordination cations connect with tellurite groups only, making the sulfate isolated in the structure. The steric repulsive action of the isolated SO4 tetrahedra may regulate the linear and lone pair groups arranged in a way that favors large birefringence. This method can be proven by theoretical calculations. PAWED studies showed that the large birefringence originated from the synergistic effect of (Hg2O2)2-, (Te2O5)2-, and (SO4)2- units, with a contribution ratio of 42.17, 37.92, and 19.88%, respectively. Our work breaks the limitation of low birefringence in sulfates and opens up new possibilities for their application as birefringent crystals.

9.
Science ; 383(6690): 1492-1498, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547269

ABSTRACT

Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.


Subject(s)
Biocompatible Materials , Ferric Compounds , Polymers , Biodegradation, Environmental , Polymers/chemistry , Polymers/metabolism , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Electricity , Animals , Rats , Rats, Sprague-Dawley , Ferric Compounds/chemistry , Ferric Compounds/metabolism
10.
Inorg Chem ; 63(9): 4011-4016, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38363859

ABSTRACT

Exploring new material systems is a highly significant task in the field of inorganic chemistry. A new mixed-valent selenium compound, Hg3Se(SeO3)(SO4), was successfully synthesized through in situ reactions. This compound exhibits a novel three-dimensional structure composed of Hg3Se(SO4) layers bridged by SeO3 trigonal pyramids. It is the first structure containing (SeO3)2-, (SO4)2-, and Se2- simultaneously. In addition, Hg3Se(SeO3)(SO4) possesses a wide bandgap (3.5 eV), moderate birefringence (Cal:0.064@546 nm, Exp:0.069@546 nm), a high laser-induced damage threshold (23.35 MW cm-2), and a wide transmittance window (0.28-6.6 µm). Our work demonstrates that mixed-valent (+4, -2) selenite selenide can be potential optical materials for the mid-infrared region.

11.
Mater Horiz ; 11(7): 1704-1709, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38270562

ABSTRACT

For non-centrosymmetric (NCS) oxides intended for ultraviolet (UV) nonlinear optical (NLO) applications, achieving a wide band gap, large second harmonic generation (SHG) intensity, and sufficient birefringence to satisfy phase matching is a significant challenge due to their inherent incompatibility. To address this issue, this study proposes a strategy called framework-optimized structural transformation. Building upon centrosymmetric (CS) NaGa(SeO3)2 as a foundation, an original UV selenite NLO material, NaLu(SeO3)2, was successfully synthesized. The derived NaLu(SeO3)2 exhibits a balanced comprehensive performance, including a band gap (5.3 eV), an SHG response (2.7 × KDP), a UV cut-off edge (210 nm), a laser-induced damage threshold (LIDT) (151.69 MW cm-2), birefringence (Cal: 0.138@546 nm, Exp: 0.153@546 nm), thermal stability (∼575 °C) and environmental stability. Notably, its SHG effect, band gap, LIDT, and birefringence are all the largest among UV non-hydrogen pure selenite materials. Such progress can be attributed to the successful arrangement of the SeO3 groups by optimizing the cations on the framework of the parent compound.

12.
Funct Integr Genomics ; 24(1): 14, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236308

ABSTRACT

Cytochrome P450s are a large family of protein-encoding genes in plant genomes, many of which have not yet been comprehensively characterized. Here, a novel P450 gene, CYP82D47, was isolated and functionally characterized from cucumber (Cucumis sativus L.). Quantitative real-time reverse-transcription polymerase chain reaction analysis revealed that CYP82D47 expression was triggered by salicylic acid (SA) and ethephon (ETH). Expression analysis revealed a correlation between CYP82D47 transcript levels and plant defense responses against powdery mildew (PM) and Fusarium oxysporum f. sp. cucumerinum (Foc). Although no significant differences were observed in disease resistance between CYP82D47-RNAi and wild-type cucumber, overexpression (OE) of CYP82D47 enhanced PM and Foc resistance in cucumber. Furthermore, the expression levels of SA-related genes (PR1, PR2, PR4, and PR5) increased in CYP82D47-overexpressing plants 7 days post fungal inoculation. The levels of ETH-related genes (EIN3 and EBF2) were similarly upregulated. The observed enhanced resistance was associated with the upregulation of SA/ETH-signaling-dependent defense genes. These findings indicate the crucial role of CYP82D47 in pathogen defense in cucumber. CYP82D47-overexpressing cucumber plants exhibited heightened susceptibility to both diseases. The study results offer important insights that could aid in the development of disease-resistant cucumber cultivars and elucidate the molecular mechanisms associated with the functions of CYP82D47.


Subject(s)
Cucumis sativus , Fusarium , Organophosphorus Compounds , Cucumis sativus/genetics , Up-Regulation , Disease Resistance/genetics , Salicylic Acid/pharmacology
13.
Ann Hematol ; 103(2): 405-408, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38095655

ABSTRACT

Immune thrombocytopenia (ITP) is a common bleeding disorder in children. First-line medicines (glucocorticoids and immunoglobulin) may not be effective for some children, endangering their lives, posing challenges for healthcare facilities, and leading to an unfavorable prognosis. As a sialidase inhibitor, oseltamivir phosphate can reduce the destruction of platelets in liver macrophages by inhibiting the sialylation of platelets, and finally achieve the purpose of increasing platelet count. In this paper, three cases of children with ITP who failed first-line therapy and were cured by oral administration of oseltamivir phosphate granules were reported. The mechanism of action of oseltamivir phosphate granules was clarified.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Child , Humans , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Oseltamivir/therapeutic use , Thrombocytopenia/therapy , Platelet Count , Blood Platelets , Phosphates
14.
Inflammopharmacology ; 32(1): 863-871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151584

ABSTRACT

BACKGROUND: Epidemiological evidence suggests that there is an association between rheumatoid arthritis (RA) and Alzheimer's disease (AD). However, the causal relationship between RA and AD remains unclear. Therefore, this study aimed to investigate the causal relationship between RA and AD. METHODS: Using publicly available genome-wide association study datasets, bidirectional two-sample Mendelian randomization (TSMR) was performed using the inverse-variance weighted (IVW), weighted median, MR‒Egger regression, simple mode, and weighted mode methods. RESULTS: The results of MR for the causal effect of RA on AD (IVW, odds ratio [OR] = 0.959, 95% confidence interval [CI]: 0.941-0.978, P = 2.752E-05; weighted median, OR = 0.960, 95% CI: 0.937-0.984, P = 0.001) revealed a causal association between genetic susceptibility to RA and an increased risk of AD. The results of MR for the causal effect of AD on RA (IVW, OR = 0.978, 95% CI: 0.906-1.056, P = 0.576; weighted median, OR = 0.966, 95% CI: 0.894-1.043, P = 0.382) indicated that there was no causal association between genetic susceptibility to AD and an increased risk of RA. CONCLUSIONS: The results of this two-way two-sample Mendelian randomization analysis revealed a causal association between genetic susceptibility to RA and a reduced risk of AD but did not reveal a causal association between genetic susceptibility to AD and an increased or reduced risk of RA.


Subject(s)
Alzheimer Disease , Arthritis, Rheumatoid , Humans , Protective Factors , Alzheimer Disease/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Arthritis, Rheumatoid/genetics , Genetic Predisposition to Disease/genetics
15.
Microbiol Spectr ; 11(6): e0104723, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37855526

ABSTRACT

IMPORTANCE: Aquaculture is essential for ensuring global food security by providing a significant source of animal protein. However, the spread of the white spot syndrome virus (WSSV) has resulted in considerable economic losses in crustacean industries. In this study, we evaluated the antiviral activity of rhein, the primary bioactive component of Rheum palmatum L., against WSSV infection, and many pathological aspects of WSSV were also described for the first time. Our mechanistic studies indicated that rhein effectively arrested the replication of WSSV in crayfish by modulating innate immunity to inhibit viral gene transcription. Furthermore, we observed that rhein attenuated WSSV-induced oxidative and inflammatory stresses by regulating the expression of antioxidant and anti-inflammatory-related genes while enhancing innate immunity by reducing total protein levels and increasing phosphatase activity. Our findings suggest that rhein holds great promise as a potent antiviral agent for the prevention and treatment of WSSV in aquaculture.


Subject(s)
Astacoidea , White spot syndrome virus 1 , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , White spot syndrome virus 1/genetics , Immunity, Innate , Antiviral Agents/pharmacology
16.
Adv Sci (Weinh) ; 10(34): e2304463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870191

ABSTRACT

It has historically been exceedingly challenging to create physically and chemically stable lanthanide compounds with strong second harmonic generation (SHG) due to their strong preference to central symmetry. In this work, five new non-centrosymmetric lanthanide selenites, namely, Ln2 F2 (OH2 )(MoO3 )2 (SeO3 )2 (Ln = Sm, Eu, Gd, Tb and Dy), are achieved by partial fluorination of the lanthanide oxygen polyhedron. An HF corrosion resistant supercritical hydrothermal method is developed, which is a facile and universal method for HF corrosion and high-temperature high-pressure environment. The title compounds displayed a novel 3D framework composed of 1D molybdenum selenite chains bridged by Ln2 F2 O12 (OH2 ) dimers. Their powder SHG responses showed a large difference, ranging from 1.0 to 9.0 × KH2 PO4 (KDP) at 1064 nm. The half-filled Gd compound exhibited very strong SHG efficiency of up to 1.2 × KTP (KTiOPO4 ) at 2050 nm. Compounds Tb and Gd are the first lanthanide selenites with SHG intensity reaching KTP level, which is very rare in this system. Furthermore, these compounds can also possess excellent physicochemical stability and strong luminescence emission, indicating that they are promising multifunctional nonlinear optical materials. This work offered an effective way for design and synthesis of multifunctional and high-performant nonlinear optical materials.

17.
J Am Chem Soc ; 145(42): 23292-23299, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37819908

ABSTRACT

Fullerenes offer versatile functionalities and are promising materials for a widespread range of applications from biomedicine and energy to electronics. Great efforts have been made to manipulate the symmetries of fullerene and its derivatives for studying material properties and novel effects, such as ferroelectricity with polar symmetry; however, no documentary report has been obtained to realize their ferroelectricity. Here, for the first time, we demonstrated clear ferroelectricity in a fullerene adduct formed by C60 and S8. More is different: the combination of the most symmetric molecule C60 with the highest Ih symmetry and molecule S8 with high D4d symmetry resulted in the polar C60S8 adduct with a low crystallographic symmetry of the C2v (mm2) point group at room temperature. The presented C60S8 undergoes polar-to-polar ferroelectric phase transition with the mm2Fm notation, whose ferroelectricity was confirmed by a ferroelectric hysteresis loop and ferroelectric domain switching. This finding opens up a new functionality for fullerenes and sheds light on the exploration of more ferroelectric fullerenes.

18.
Sci Rep ; 13(1): 16347, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770650

ABSTRACT

Step error calculation of numerical control (NC) machining tool path is a premise for generating high-quality tool path and promoting its application. At present, iterative methods are generally used to calculate step error, and the computation time increases when accuracy improves. Neural networks can be calculated on GPUs and cloud platforms, which is conducive to reducing computation time and improving accuracy through continuous learning. This article innovatively introduces a BP neural network model to predict step error values. Firstly, the core parameters required for step error calculation are taken as the data samples to construct the neural network model, and map to the same scale through Z-score normalization to eliminate the adverse effects of singular parameters on the calculation results. Then, considering only a small number of parameters determine theoretical values of step error, the Dropout technique can drop hidden layer neurons with a certain probability, which is helpful to avoid overfitting and used in the neural network model design. In the neural network model training, this paper adds the Stochastic Gradient Descent with Momentum (SGDM) optimizer to the back propagation of network training in order to improves the network' stability and accuracy. The proposed neural network predicts step error of samples from three surface models, the results show that the prediction error decreases as sample training increases. After trained by 15% of the surface samples, the neural network predicts the step errors of the remaining samples. Compared with theoretical values, more than 99% of the predicted values have an absolute error less than 1 µm. Moreover, the cost time is only one-third of the geometric method, which verifies the effectiveness and efficiency of our method.

19.
Mil Med Res ; 10(1): 41, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670366

ABSTRACT

BACKGROUND: Climate change profoundly shapes the population health at the global scale. However, there was still insufficient and inconsistent evidence for the association between heat exposure and chronic kidney disease (CKD). METHODS: In the present study, we studied the association of heat exposure with hospitalizations for cause-specific CKD using a national inpatient database in China during the study period of hot season from 2015 to 2018. Standard time-series regression models and random-effects meta-analysis were developed to estimate the city-specific and national averaged associations at a 7 lag-day span, respectively. RESULTS: A total of 768,129 hospitalizations for CKD was recorded during the study period. The results showed that higher temperature was associated with elevated risk of hospitalizations for CKD, especially in sub-tropical cities. With a 1 °C increase in daily mean temperature, the cumulative relative risks (RR) over lag 0-7 d were 1.008 [95% confidence interval (CI) 1.003-1.012] for nationwide. The attributable fraction of CKD hospitalizations due to high temperatures was 5.50%. Stronger associations were observed among younger patients and those with obstructive nephropathy. Our study also found that exposure to heatwaves was associated with added risk of hospitalizations for CKD compared to non-heatwave days (RR = 1.116, 95% CI 1.069-1.166) above the effect of daily mean temperature. CONCLUSIONS: Short-term heat exposure may increase the risk of hospitalization for CKD. Our findings provide insights into the health effects of climate change and suggest the necessity of guided protection strategies against the adverse effects of high temperatures.


Subject(s)
Hot Temperature , Renal Insufficiency, Chronic , Humans , China , Cities , Hospitalization , Time Factors
20.
J Orthop Translat ; 42: 113-126, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37680904

ABSTRACT

Background: Dedifferentiated fat cells (DFATs) are highly homogeneous and multipotent compared with adipose-derived stromal cells (SCs). Infrapatellar fat pad (IFP)-SCs have advanced chondrogenic potency; however, whether IFP-DFATs could serve as better cell material remains unclear. Here, we aimed to examine the influence of age and body mass index (BMI) on the features of IFPs and IFP-derived cells (IFP-SCs and IFP-DFATs) with exploration of the clinical utilization of IFP-DFATs. Methods: We collected IFPs with isolation of paired IFP-SCs and IFP-DFATs from individuals aged 65 years and older with distinct body weights who underwent total knee replacement for osteoarthritis (OA). Flow cytometry was used to characterize the cellular immunophenotypes. Adipogenesis and chondrogenesis were performed in vitro. Real-time qPCR, western blotting, and Oil Red O or Alcian blue staining were performed to evaluate inflammation, adipogenesis, and chondrogenesis. RNA sequencing and Seahorse analyses were conducted to explore the underlying mechanisms. Results: We found that IFPs from old or normal-weight individuals with knee OA were pro-inflammatory, and that interleukin-6 (IL-6) signaling was associated with multiple immune-related molecules, whereas IFP-derived cells could escape the inflammatory properties. Aging plays an important role in diminishing the chondrogenic and adipogenic abilities of IFP-SCs; however, this effect was avoided in IFP-DFATs. Generally, IFP-DFATs presented a steady state of chondrogenesis (less influenced by age) and consistently enhanced adipogenesis compared to paired IFP-SCs in different age or BMI groups. RNA sequencing and Seahorse analysis suggested that the downregulation of eukaryotic initiation factor 2 (EIF2) signaling and enhanced mitochondrial function may contribute to the improved cellular biology of IFP-DFATs. Conclusions: Our data indicate that IFP-DFATs are superior cell material compared to IFP-SCs for cartilage differentiation and adipogenesis, particularly in advanced aging patients with knee OA. The translational potential of this article: These results provide a novel concept and supportive evidence for the use of IFP-DFATs for cell therapy or tissue engineering in patients with knee OA. Using Ingenuity Pathway Analysis (IPA) of RNA-seq data and Seahorse analysis of mitochondrial metabolic parameters, we highlighted that some molecules, signaling pathways, and mitochondrial functions are likely to be jointly coordinated to determine the enhanced biological function in IFP-DFATs.

SELECTION OF CITATIONS
SEARCH DETAIL
...