Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Small ; : e2310431, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441366

ABSTRACT

Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2 ) to ammonia (NH3 ) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2 S4 @MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2 S4 @MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1  mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2 S4 and MnO2 . Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2 S4 @MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.

2.
Cancer Epidemiol ; 88: 102517, 2024 02.
Article in English | MEDLINE | ID: mdl-38141471

ABSTRACT

OBJECTIVES: To describe the epidemiological time trends and gender, age and regional differences of gastric cancer in Asia during 1990-2019, and to analyze the association between the human development index (HDI) and the statistical indicators of the burden of disease. METHODS: Describing trends in age-standardized incidence rates (ASIR) and age-standardized mortality rate (ASMR) in Asia from 1990 to 2019 based on GBD-reported population-based surveillance of gastric cancer in Asia. Obtained ASIR, ASMR, and mortality to incidence ratios (MIR) for gastric cancer in different countries in 2019, with association analysis by Kruskal-Wallis nonparametric test. RESULTS: The annual percentage change in ASIR and ASMR in Asia from 1990 to 2019 was - 1.20% and - 1.91%. Male gastric cancer patients have higher ASIR and ASMR than female gastric cancer patients. Decreasing trends in ASIR and ASMR for the total population in five Asian regions. From 1990 to 2019, the average annual change in ASMR was - 2.45%, - 1.43%, - 0.53%, - 0.62%, and - 0.27% for Central Asia, East Asia, high-income Asia-Pacific, South Asia, and Southeast Asia, respectively (p < 0.05). Both incidence and mortality were concentrated in the age groups of 85-89 and 89-94 years. Classifying Asian countries into different levels of HDI, only MIR was associated with HDI levels. CONCLUSION: ASIR and ASMR of gastric cancer in the total population, different regions, and countries in Asia from 1990 to 2019 showed an overall decreasing trend. The MIR index is suggestive of survival rates and the role of cancer care in individual countries. Asian countries should develop different strategies for gastric cancer screening and prevention according to high-risk age, high-risk gender and HDI.


Subject(s)
Stomach Neoplasms , Female , Humans , Male , Asia/epidemiology , Asia, Eastern , Incidence , Stomach Neoplasms/epidemiology , Stomach Neoplasms/mortality , Cost of Illness
3.
Plant Phenomics ; 5: 0121, 2023.
Article in English | MEDLINE | ID: mdl-38076281

ABSTRACT

Accurate assessment of crop biochemical profiles plays a crucial role in diagnosing their physiological status. The conventional destructive methods, although reliable, demand extensive laboratory work for measuring various traits. On the other hand, nondestructive techniques, while efficient and adaptable, often suffer from reduced precision due to the intricate interplay of the field environment and canopy structure. Striking a delicate balance between efficiency and accuracy, we have developed the Bio-Master phenotyping system. This system is capable of simultaneously measuring four vital biochemical components of the canopy profile: dry matter, water, chlorophyll, and nitrogen content. Bio-Master initiates the process by addressing structural influences, through segmenting the fresh plant and then further chopping the segment into uniform small pieces. Subsequently, the system quantifies hyperspectral reflectance and fresh weight over the sample within a controlled dark chamber, utilizing an independent light source. The final step involves employing an embedded estimation model to provide synchronous estimates for the four biochemical components of the measured sample. In this study, we established a comprehensive training dataset encompassing a wide range of rice varieties, nitrogen levels, and growth stages. Gaussian process regression model was used to estimate biochemical contents utilizing reflectance data obtained by Bio-Master. Leave-one-out validation revealed the model's capacity to accurately estimate these contents at both leaf and plant scales. With Bio-Master, measuring a single rice plant takes approximately only 5 min, yielding around 10 values for each of the four biochemical components across the vertical profile. Furthermore, the Bio-Master system allows for immediate measurements near the field, mitigating potential alterations in plant status during transportation and processing. As a result, our measurements are more likely to faithfully represent in situ values. To summarize, the Bio-Master phenotyping system offers an efficient tool for comprehensive crop biochemical profiling. It harnesses the benefits of remote sensing techniques, providing significantly greater efficiency than conventional destructive methods while maintaining superior accuracy when compared to nondestructive approaches.

4.
Article in English | MEDLINE | ID: mdl-37957903

ABSTRACT

BACKGROUND AND PURPOSE: Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS: Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS: A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION: QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.

5.
Food Funct ; 13(24): 13064, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36454540

ABSTRACT

Correction for 'Clinical correlation between serum cytokines and the susceptibility to Polygonum multiflorum-induced liver injury and an experimental study' by Le Zhang et al., Food Funct., 2022, 13, 825-833, https://doi.org/10.1039/D1FO03489H.

6.
Eur J Med Chem ; 241: 114659, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35970074

ABSTRACT

Cytokine storm is a key feature of sepsis and severe stage of COVID-19, and the immunosuppression after excessive immune activation is a substantial hazard to human life. Both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are recognized by various pattern recognition receptors (PRRs), which lead to the immune response. A number of neolignan analogues were synthesized in this work and showed powerful anti-inflammation properties linked to the response to innate and adaptive immunity, as well as NP-7 showed considerable anti-inflammatory activity at 100 nM. On the sepsis model caused by cecum ligation and puncture (CLP) in C57BL/6J mice, NP-7 displayed a strong regulatory influence on cytokine release. Then a photo-affinity probe of NP-7 was synthesized and chemoproteomics based on stable isotope labeling with amino acids in cell cultures (SILAC) identified Immunity-related GTPase M (IRGM) as a target suppressing cytokine storm, which was verified by competitive pull-down, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and molecular dynamics simulations.


Subject(s)
Anti-Inflammatory Agents , Cytokine Release Syndrome , GTP-Binding Proteins , Sepsis , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , COVID-19 , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Disease Models, Animal , GTP-Binding Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Proteomics
7.
Front Pharmacol ; 13: 862830, 2022.
Article in English | MEDLINE | ID: mdl-35656304

ABSTRACT

The complexity of chemical components of herbal medicines often causes great barriers to toxicity research. In our previous study, we have found the critical divergent hepatotoxic potential of a pair of stilbene isomers in a famous traditional Chinese herb, Polygonum multiflorum (Heshouwu in Chinese). However, the high-throughput in vitro evaluation for such stereoisomerism-dependent hepatotoxicity is a critical challenge. In this study, we used a hepatic organoids-based in vitro hepatotoxic evaluation system in conjunction with using high content imaging to differentiate in vivo organ hepatotoxicity of the 2,3,5,4'-tetrahydroxy-trans-stilbene-2-O-ß-glucoside (trans-SG) and its cis-isomer (cis-SG). By using such an organoid platform, we successfully differentiated the two stereoisomers' hepatotoxic potentials, which were in accordance with their differences in rodents and humans. The lesion mechanism of the toxic isomer (cis-SG) was further found as the mitochondrial injury by high-content imaging, and its hepatotoxicity could be dose-dependently inhibited by the mitochondrial protective agent. These results demonstrated the utility of the organoids-based high-content imaging approach in evaluating and predicting organ toxicity of natural products in a low-cost and high-throughput way. It also suggested the rationale to use long-term cultured organoids as an alternative toxicology platform to identify early and cautiously the hepatotoxic new drug candidates in the preclinical phase.

8.
Pharm Biol ; 60(1): 525-534, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35253576

ABSTRACT

CONTEXT: Keguan-1 (KG-1) plays a vital role in enhancing the curative effects, improving quality of life, and reducing the development of acute lung injury (ALI). OBJECTIVE: To unravel the protective effect and underlying mechanism of KG-1 against ALI. MATERIALS AND METHODS: C57BL/6J mice were intratracheally instilled with lipopolysaccharide to establish the ALI model. Then, mice in the KG-1 group received a dose of 5.04 g/kg for 12 h. The levels of proinflammatory cytokines, chemokines, and pathological characteristics were determined to explore the effects of KG-1. Next, untargeted metabolomics was used to identify the differential metabolites and involved pathways for KG-1 anti-ALI. Network pharmacology was carried out to predict the putative active components and drug targets of KG-1 anti-ALI. RESULTS: KG-1 significantly improved the levels of TNF-α (from 2295.92 ± 529.87 pg/mL to 1167.64 ± 318.91 pg/mL), IL-6 (from 4688.80 ± 481.68 pg/mL to 3604.43 ± 382.00 pg/mL), CXCL1 (from 4361.76 ± 505.73 pg/mL to 2981.04 ± 526.18 pg/mL), CXCL2 (from 5034.09 ± 809.28 pg/mL to 2980.30 ± 747.63 pg/mL), and impaired lung histological damage. Untargeted metabolomics revealed that KG-1 significantly regulated 12 different metabolites, which mainly related to lipid, amino acid, and vitamin metabolism. Network pharmacology showed that KG-1 exhibited anti-ALI effects through 17 potentially active components acting on seven putative drug targets to regulate four metabolites. DISCUSSION AND CONCLUSIONS: This work elucidated the therapeutic effect and underlying mechanism by which KG-1 protects against ALI from the view of the metabolome, thus providing a scientific basis for the usage of KG-1.


Subject(s)
Acute Lung Injury/prevention & control , Drugs, Chinese Herbal/pharmacology , Metabolomics , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Network Pharmacology
9.
Food Funct ; 13(2): 825-833, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34985089

ABSTRACT

Polygonum multiflorum (PM), a popular functional food, and a herbal and dietary supplement, is widely used as a tonic in China and East Asia. In recent years, it has attracted great concern for its ability to cause idiosyncratic drug-induced liver injury (IDILI). However, identifying individuals susceptible to IDILI remains challenging. This is a prospective study. For 6 patients whose serum alanine aminotransferase (ALT) levels after consuming PM were abnormally elevated (susceptible group), 15 patients with normal levels of liver injury markers were matched (tolerant group) based on similar baseline characteristics. ProcartaPlex immunoassays were adopted to quantitatively detect 33 serum cytokines in the two groups of patients before consuming PM, to characterize the cytokine profile and screen differential cytokines. Subsequently, the susceptibility of a potential biomarker to regulate PM-induced liver injury was validated in animal models. There were significant differences in the cytokine profiles between the susceptible and tolerant groups, wherein the susceptible patients showed immune perturbation characterized by high expression of multiple inflammatory cytokines, especially the proinflammatory cytokine TNF-α (P = 0.006). Among them, the cytokine TNF-α had the strongest correlation with ALT, where the correlation coefficient was greater than 0.6, and the area under the receiver operating characteristic curve was more than 0.8. Animal experiments revealed that both PM water extract and its susceptibility component of liver injury, cis-stilbene glucoside, could cause liver injury in the mice pre-stimulated using TNF-α. Conversely, administration of the same dose of drugs on control mice did not show any hepatotoxicity. In conclusion, immune perturbation mainly mediated by TNF-α may regulate the susceptibility to PM-induced liver injury. This provides a new perspective for the study of susceptibility to IDILI.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Cytokines/metabolism , Fallopia multiflora/chemistry , Plant Extracts/toxicity , Adult , Animals , Cytokines/genetics , Female , Gene Expression Regulation/drug effects , Humans , Liver/drug effects , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha/pharmacology
10.
J Ethnopharmacol ; 285: 114838, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34788645

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Keguan-1, a new traditional Chinese medicine (TCM) prescription contained seven Chinese herbs, is developed to treat coronavirus disease 19 (COVID-19). The first internationally registered COVID-19 randomised clinical trial on integrated therapy demonstrated that Keguan-1 significantly reduced the incidence of ARDS and inhibited the severe progression of COVID-19. AIM OF THE STUDY: To investigate the protective mechanism of Keguan-1 on ARDS, a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model was used to simulate the pathological state of ARDS in patients with COVID-19, focusing on its effect and mechanism on ALI. MATERIALS AND METHODS: Mice were challenged with LPS (2 mg/kg) by intratracheal instillation (i.t.) and were orally administered Keguan-1 (low dose, 1.25 g/kg; medium dose, 2.5 g/kg; high dose, 5 g/kg) after 2 h. Bronchoalveolar lavage fluid (BALF) and lung tissue were collected 6 h and 24 h after i.t. administration of LPS. The levels of inflammatory factors tumour necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1ß, keratinocyte-derived chemokine (KC or mCXCL1), macrophage inflammatory protein 2 (MIP2 or mCXCL2), angiotensin II (Ang II), and endothelial cell junction-associated proteins were analysed using ELISA or western blotting. RESULTS: Keguan-1 improved the survival rate, respiratory condition, and pathological lung injury; decreased the production of proinflammatory factors (TNF-α, IL-6, IL-1ß, KC, and MIP2) in BALF and the number of neutrophils in the lung tissues; and ameliorated inflammatory injury in the lung tissues of the mice with LPS-induced ALI. Keguan-1 also reduced the expression of Ang II and the adhesion molecule ICAM-1; increased tight junction proteins (JAM-1 and claudin-5) and VE-cadherin expression; and alleviated pulmonary vascular endothelial injury in LPS-induced ALI. CONCLUSION: These results demonstrate that Keguan-1 can improve LPS-induced ALI by reducing inflammation and pulmonary vascular endothelial injury, providing scientific support for the clinical treatment of patients with COVID-19. Moreover, it also provides a theoretical basis and technical support for the scientific use of TCMs in emerging infectious diseases.


Subject(s)
Acute Lung Injury , Antiviral Agents/pharmacology , Bronchoalveolar Lavage Fluid , COVID-19 , Drugs, Chinese Herbal/pharmacology , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Capsules , Chemokine CXCL2/analysis , Coix , Forsythia , Interleukin-1beta/analysis , Interleukin-6/analysis , Lonicera , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Mortality , Morus , Peptide Fragments/analysis , Prunus armeniaca , Respiration/drug effects , SARS-CoV-2 , Treatment Outcome , Tumor Necrosis Factor-alpha/analysis
11.
J Med Chem ; 65(6): 4565-4577, 2022 03 24.
Article in English | MEDLINE | ID: mdl-34842428

ABSTRACT

The naturally occurring linear dipeptide JBP923 (trans-4-l-Hyp-l-Ser, HS-tLL) with anti-inflammatory effects showed potential for the treatment of inflammatory bowel disease (IBD). However, colon-specific delivery after oral administration is still a challenge because its absorption is mediated by oligopeptide transporter 1 (PEPT1) in the upper small intestine and because of its instability in the gastrointestinal tract. Therefore, we aimed to enhance the colon-targeting efficiency by modulating HS-tLL chirality to synthesize eight enantiomers. Among these enantiomers, trans-4-d-Hyp-d-Ser, cis-4-l-Hyp-d-Ser, cis-4-d-Hyp-l-Ser, and cis-4-d-Hyp-d-Ser did not work as substrates of PEPT1 and were stable in the gastrointestinal tract, resulting in enhanced colonic accumulation through the paracellular pathway due to the loose tight junctions in IBD. Interestingly, cis-4-d-Hyp-d-Ser exerted the most potent therapeutic effect on IBD. Our findings revealed the impact of chirality on the colonic accumulation of the linear dipeptide, providing strategies for the colon-targeted delivery of the linear dipeptide for the treatment of IBD.


Subject(s)
Inflammatory Bowel Diseases , Peptide Transporter 1 , Symporters , Colon , Dipeptides/chemistry , Dipeptides/pharmacology , Humans , Inflammatory Bowel Diseases/drug therapy , Peptide Transporter 1/chemistry , Serine/pharmacology , Symporters/metabolism
12.
EMBO Rep ; 23(2): e53499, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34882936

ABSTRACT

The activation of the nucleotide oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is related to the pathogenesis of a wide range of inflammatory diseases, but drugs targeting the NLRP3 inflammasome are still scarce. In the present study, we demonstrated that Licochalcone B (LicoB), a main component of the traditional medicinal herb licorice, is a specific inhibitor of the NLRP3 inflammasome. LicoB inhibits the activation of the NLRP3 inflammasome in macrophages but has no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, LicoB directly binds to NEK7 and inhibits the interaction between NLRP3 and NEK7, thus suppressing NLRP3 inflammasome activation. Furthermore, LicoB exhibits protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including lipopolysaccharide (LPS)-induced septic shock, MSU-induced peritonitis and non-alcoholic steatohepatitis (NASH). Our findings indicate that LicoB is a specific NLRP3 inhibitor and a promising candidate for treating NLRP3 inflammasome-related diseases.


Subject(s)
Chalcones , Inflammasomes , Animals , Chalcones/pharmacology , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein
13.
Front Pharmacol ; 12: 646121, 2021.
Article in English | MEDLINE | ID: mdl-34177570

ABSTRACT

Aconitine is attracting increasing attention for its unique positive inotropic effect on the cardiovascular system, but underlying molecular mechanisms are still not fully understood. The cardiotonic effect always requires abundant energy supplement, which is mainly related to mitochondrial function. And OPA1 has been documented to play a critical role in mitochondrial morphology and energy metabolism in cardiomyocytes. Hence, this study was designed to investigate the potential role of OPA1-mediated regulation of energy metabolism in the positive inotropic effect caused by repeated aconitine treatment and the possible mechanism involved. Our results showed that repeated treatment with low-doses (0-10 µM) of aconitine for 7 days did not induce detectable cytotoxicity and enhanced myocardial contraction in Neonatal Rat Ventricular Myocytes (NRVMs). Also, we first identified that no more than 5 µM of aconitine triggered an obvious perturbation of mitochondrial homeostasis in cardiomyocytes by accelerating mitochondrial fusion, biogenesis, and Parkin-mediated mitophagy, followed by the increase in mitochondrial function and the cellular ATP content, both of which were identified to be related to the upregulation of ATP synthase α-subunit (ATP5A1). Besides, with compound C (CC), an inhibitor of AMPK, could reverse aconitine-increased the content of phosphor-AMPK, OPA1, and ATP5A1, and the following mitochondrial function. In conclusion, this study first demonstrated that repeated aconitine treatment could cause the remodeling of mitochondrial function via the AMPK-OPA1-ATP5A1 pathway and provide a possible explanation for the energy metabolism associated with cardiotonic effect induced by medicinal plants containing aconitine.

14.
Biomed Chromatogr ; 35(9): e5140, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33830528

ABSTRACT

Owing to the complexity of the composition of herbal and dietary supplements, it is a challenging problem to efficiently screen and identify active or toxic compounds. Psoralea corylifolia L. (PCL) was selected as the subbject to establish a methodology for rapid screening and identification of hepatotoxic compounds. High-content imaging, ultra-performance liquid chromatography and high-resolution mass spectrometry were used in this study to detect the hepatotoxicity and identify unknown compounds in PCL samples. Then, putative toxic compounds which are highly related to hepatotoxicity were screened by spectrum-toxicity correlation analysis, and the toxicity intensity verified by high-content imaging. The maximum nontoxic dose of processed samples with good detoxification effect reduced more than 9 times compared with unprocessed raw medicinal materials. Spectrum-toxicity correlation analysis showed that bavachinin A, bavachin, isobavachalcone and neobavaisoflavone had high correlation with the hepatotoxicity of PCL, and psoralen and isopsoralen had low correlation with hepatotoxicity. This study verified the hepatotoxicity of these six putative compound monomers, proving the results of spectrum-toxicity correlation analysis. Based on the correlation analysis of high-resolution mass spectrometry of detection compounds and high-content imaging of hepatocyte toxicity data, the potential toxic compound of herbal and dietary supplement products can be quickly and accurately screened.


Subject(s)
Dietary Supplements/toxicity , Drugs, Chinese Herbal/toxicity , Hepatocytes/drug effects , Psoralea/chemistry , Cell Survival/drug effects , Cells, Cultured , Ficusin/toxicity , Flavonoids/toxicity , Humans , Isoflavones/toxicity , Mass Spectrometry/methods , Molecular Imaging/methods
15.
Chem Rec ; 21(4): 841-857, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33656241

ABSTRACT

The rapid development of radical chemistry has spurred several innovative strategies for organic synthesis. The novel approaches for organic synthesis play a critical role in promoting and regulating the single-electron redox activity. Among them, photoelectrocatalysis (PEC) has attained considerable attention as the most promising strategy to convert organic compounds into fine chemicals. This review highlights the current progress in organic synthesis through PEC, including various catalytic reactions, catalyst systems and practical applications. The numerous catalytic reactions suffer the high overpotential and poor conversion efficiency, depending on the design of electrolyzers and the reaction mechanisms. We also considered the recent developments with special emphasis on scientific problems and efficient solutions, which enhance accessibility to utilize and further develop the photoelectrocatalytic technology for the specific chemical bonds formation and the fabrication of numerous catalytic systems.

17.
Bioanalysis ; 12(21): 1509-1519, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33078962

ABSTRACT

Aim: Nimodipine and 3-n-butylphthalide are co-administered to treat vascular dementia, but the pharmacokinetic interaction between the two drugs is still unknown. Therefore, a robust, high-throughput and economical supercritical fluid chromatography-ESI-MS/MS method has been initially developed to simultaneously determine nimodipine and 3-n-butylphthalide in beagle plasma, in order to study the safety of co-administration. Materials & methods: After a simple protein precipitation procedure, isocratic elution with mobile phase of CO2 and methanol (containing 0.3% formic acid and 2 mM ammonium acetate) was applied to minimize run time and facilitate sensitive and high-throughput bioanalysis. The method was fully validated according to US FDA Guidance. The validated method was then successfully applied in a pharmacokinetic interaction study. Results: The results indicated there is no significant pharmacokinetic interaction between the two drugs.


Subject(s)
Benzofurans/therapeutic use , Nimodipine/therapeutic use , Animals , Benzofurans/blood , Chromatography, Supercritical Fluid/methods , Dogs , Nimodipine/blood , Nimodipine/pharmacokinetics , Tandem Mass Spectrometry/methods
18.
Chin J Integr Med ; 26(9): 648-655, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32676976

ABSTRACT

OBJECTIVES: To develop a new Chinese medicine (CM)-based drug and to evaluate its safety and effect for suppressing acute respiratory distress syndrome (ARDS) in COVID-19 patients. METHODS: A putative ARDS-suppressing drug Keguan-1 was first developed and then evaluated by a randomized, controlled two-arm trial. The two arms of the trial consist of a control therapy (alpha interferon inhalation, 50 µg twice daily; and lopinavir/ritonavir, 400 and 100 mg twice daily, respectively) and a testing therapy (control therapy plus Keguan-1 19.4 g twice daily) by random number table at 1:1 ratio with 24 cases each group. After 2-week treatment, adverse events, time to fever resolution, ARDS development, and lung injury on newly diagnosed COVID-19 patients were assessed. RESULTS: An analysis of the data from the first 30 participants showed that the control arm and the testing arm did not exhibit any significant differences in terms of adverse events. Based on this result, the study was expanded to include a total of 48 participants (24 cases each arm). The results show that compared with the control arm, the testing arm exhibited a significant improvement in time to fever resolution (P=0.035), and a significant reduction in the development of ARDS (P=0.048). CONCLUSIONS: Keguan-1-based integrative therapy was safe and superior to the standard therapy in suppressing the development of ARDS in COVID-19 patients. (Trial registration No. NCT04251871 at www.clinicaltrials.gov ).


Subject(s)
Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/administration & dosage , Interferon-alpha/administration & dosage , Lopinavir/administration & dosage , Pneumonia, Viral/drug therapy , Severe Acute Respiratory Syndrome/drug therapy , Administration, Inhalation , Adult , COVID-19 , China , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Follow-Up Studies , Humans , Integrative Medicine , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Risk Assessment , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/mortality , Severity of Illness Index , Survival Rate
19.
Pharmacol Res ; 152: 104618, 2020 02.
Article in English | MEDLINE | ID: mdl-31891789

ABSTRACT

Several decades have passed since resveratrol (RSV) was first identified in red wine. Researchers have reported the pleiotropic anti-oxidant, anti-inflammatory, anti-cancer, anti-aging, and neuronal protective effects of resveratrol and its glycosylated derivative. However, few studies have distinguished the minute differences in the properties between resveratrol and its glycosylated derivative in terms of synaptic plasticity. As an abundant natural product of glycosylated resveratrol, the derivative 2,3,4',5-tetrahydroxystilbene-2-O-ß-d-glucoside (TSG) has been determined to be a better option for long-term potentiation (LTP) in the hippocampus under physiological and pathological conditions than resveratrol. TSG, as well as its parent molecule RSV, could elicit early-LTP and recover fast excitatory postsynaptic potentials (EPSPs) in the hippocampus. Using various modalities, including pre- and post-whole-cell patch clamping techniques in the calyx of Held, pharmacological inhibition of the N-methyl-d-aspartic acid receptor (NMDAr) and the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAr) as well as protein kinase C (PKC) activation, we demonstrated that TSG, unlike RSV, could merely promote NMDA-mediated EPSC via PKCß cascade. Our results provide new knowledge that glycosylation of resveratrol could significantly improve its specificity in promoting sole NMDAr mediation of EPSPs, in addition to improving solubility and resistance against oxidation in vivo. These observations could contribute to further exploration of pharmaceutical evaluation of glycosylated stilbene in the future.


Subject(s)
Glucosides/pharmacology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Stilbenes/pharmacology , Animals , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/physiology , Mice, Inbred C57BL , Mice, Transgenic , Protein Kinase C beta/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/physiology
20.
Front Pharmacol ; 11: 609378, 2020.
Article in English | MEDLINE | ID: mdl-33584288

ABSTRACT

Green tea extract (GTE) is popular in weight loss, and epigallocatechin gallate (EGCG) is considered as the main active component. However, GTE is the primary cause of herbal and dietary supplement-induced liver injury in the United States. Whether there is a greater risk of liver injury when EGCG is consumed during dieting for weight loss has not been previously reported. This study found for the first time that EGCG could induce enhanced lipid metabolism pathways, suggesting that EGCG had the so-called "fat burning" effect, although EGCG did not cause liver injury at doses of 400 or 800 mg/kg in normal mice. Intriguingly, we found that EGCG caused dose-dependent hepatotoxicity on mice under dietary restriction, suggesting the potential combination effects of dietary restriction and EGCG. The combination effect between EGCG and dietary restriction led to overactivation of linoleic acid and arachidonic acid oxidation pathways, significantly increasing the accumulation of pro-inflammatory lipid metabolites and thus mediating liver injury. We also found that the disruption of Lands' cycle and sphingomyelin-ceramides cycle and the high expression of taurine-conjugated bile acids were important metabolomic characteristics in EGCG-induced liver injury under dietary restriction. This original discovery suggests that people should not go on a diet while consuming EGCG for weight loss; otherwise the risk of liver injury will be significantly increased. This discovery provides new evidence for understanding the "drug-host" interaction hypothesis of drug hepatotoxicity and provides experimental reference for clinical safe use of green tea-related dietary supplements.

SELECTION OF CITATIONS
SEARCH DETAIL
...