Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Article in English | MEDLINE | ID: mdl-38751683

ABSTRACT

Background: Poland syndrome is an occasional congenital malformation characterized by unilateral chest wall dysplasia and ipsilateral upper limb abnormalities. An association between Poland syndrome and breast cancer has been reported, but no clear etiological link between Poland syndrome and breast tumors has been established. We report a case of Poland syndrome combined with breast cancer and analyzed the clinical features of breast cancer in this case and its influence on the choice of treatment for breast cancer. Case Description: In February 2022, we admitted a 47-year-old woman with Poland syndrome involving the right limb combined with right-sided breast cancer. After admission, the patient was given eight cycles of neoadjuvant therapy and underwent a modified radical mastectomy on September 7, 2022. Absence of right pectoralis major muscle and pectoralis minor muscle, thoracic deformity, and an adhesive band along the side of the sternum to the right axilla were observed during the operation. After surgery, the incision achieved grade-A healing, and the targeted therapy was continued for 1 year. The patient was followed up for 8 months after surgery, and the limb function of the affected side recovered well, and no obvious subcutaneous effusion, flap necrosis, upper limb edema, and other complications were observed. Conclusions: The anatomic variation of patients with Poland syndrome has some influence on the selection of surgical methods for breast cancer, but whether it would affect the prognosis of patients is unknown. To clarify the relationship between Poland syndrome and breast cancer, we need more cases to conduct etiological studies in the future.

2.
BMJ Open ; 14(5): e080358, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749680

ABSTRACT

INTRODUCTION: Spinal cord injury (SCI) is a catastrophic event with devastating physical, social and occupational consequences for patients and their families. The number of patients with acute SCI in China continues to grow rapidly, but there have been no large prospective cohort studies of patients with acute SCI. This proposed study aims to establish a multicentre, extensive sample cohort of clinical data and biological samples of patients in China, which would aid the systematisation and standardisation of clinical research and treatment of acute SCI, thus reducing the heavy burden of acute SCI on patients and society. METHODS AND ANALYSIS: The Chinese Real-World Evidence for Acute Spinal Cord Injury (ChiRES) study is an observational, multicentre cohort study of patients with acute SCI admitted to the Qilu Hospital of Shandong University and other participating centres with prospective collection of their clinical data and biological samples. We aim to recruit 2097 patients in this study. Demographics, disease history, emergency intervention information, motor and sensory examinations, surgical information, medication information and rehabilitation evaluation will be recorded. This will facilitate the development of a prediction model for complications and prognosis of patients with acute SCI and an evaluation of the current management of acute SCI. Among these variables, detailed information on surgical treatment will also be used to assess procedures for acute SCI treatment. Outcome measurements, including the International Standard for Neurological Classification of Spinal Cord Injury examinations, the occurrence of complications and death, will be performed repeatedly during follow-up. We will analyse imaging data and blood samples to develop SCI imaging markers and biomarkers. ETHICS AND DISSEMINATION: This study protocol has been approved by the Medical Ethics Committee of the Qilu Hospital of Shandong University and all other participating centres. The findings will be disseminated in peer-reviewed journals and academic conferences.


Subject(s)
Observational Studies as Topic , Spinal Cord Injuries , Humans , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy , Prospective Studies , China , Research Design , Multicenter Studies as Topic , Female , Adult , Male , East Asian People
3.
Foods ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611280

ABSTRACT

There is a scarcity of data on how the lipid composition of oily seeds changes in response to biotic stress. Yellow peach moth (Conogethes punctiferalis) has caused massive economic losses on the pecan (Carya illinoinensis) industry. Lipidomics is used in this study to determine the lipid composition of pecan and how it changes in response to insect attack. Pecan had 167 lipids, including 34 glycerolipids (GL), 62 glycerophospholipids (GP), 17 fatty acyls (FA), 41 sphingolipids (SP), and 13 saccharolipids (SL). The effects of biotic stress on lipids, particularly GL and GP, were significant. Biotic stress significantly reduced the lipid content of chains longer than 48. Forty-four significantly different lipids were discovered as potential biomarkers for distinguishing non-infected pecans from infested pecans. In addition, we used bioinformatics to identify the five most important metabolic pathways in order to investigate the processes underlying the changes. Our discoveries may offer valuable insights for enhancing pecan production in the future and contribute novel perspectives towards enhancing the nutritional value of pecans.

4.
Scand J Med Sci Sports ; 34(4): e14628, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629807

ABSTRACT

The efficacy of interrupting prolonged sitting may be influenced by muscle activity patterns. This study examined the effects of interrupting prolonged sitting time with different muscle activity patterns on continuously monitored postprandial glycemic response. Eighteen overweight and obese men (21.0 ± 1.2 years; 28.8 ± 2.2 kg/m2) participated in this randomized four-arm crossover study, including uninterrupted sitting for 8.5 h (SIT) and interruptions in sitting with matched energy expenditure and duration but varying muscle activity: 30-min walking at 4 km/h (ONE), sitting with 3-min walking at 4 km/h (WALK) or squatting (SQUAT) every 45 min for 10 times. Net incremental area under the curve (netiAUC) for glucose was compared between conditions. Quadriceps, hamstring, and gluteal muscles electromyogram (EMG) patterns including averaged muscle EMG amplitude (aEMG) and EMG activity duration were used to predict the effects on glucose netiAUC. Compared with SIT (10.2 mmol/L/h [95%CI 6.3 to 11.7]), glucose netiAUC was lower during sitting interrupted with any countermeasure (ONE 9.2 mmol/L/h [8.0 to 10.4], WALK 7.9 mmol/L/h [6.4 to 9.3], and SQUAT 7.9 mmol/L/h [6.4 to 9.3], all p < 0.05). Furthermore, WALK and SQUAT resulted in a lower glucose netiAUC compared with ONE (both p < 0.05). Only increased aEMG in quadriceps (-0.383 mmol/L/h [-0.581 to -0.184], p < 0.001) and gluteal muscles (-0.322 mmol/L/h [-0.593 to -0.051], p = 0.022) was associated with a reduction in postprandial glycemic response. Collectively, short, frequent walking or squatting breaks effectively enhance glycemic control in overweight and obese men compared to a single bout of walking within prolonged sitting. These superior benefits seem to be associated with increased muscle activity intensity in the targeted muscle groups during frequent transitions from sitting to activity.


Subject(s)
Glycemic Control , Overweight , Humans , Male , Blood Glucose , Cross-Over Studies , Glucose , Insulin , Obesity/therapy , Overweight/therapy , Postprandial Period , Sedentary Behavior , Walking/physiology , Young Adult
5.
Front Endocrinol (Lausanne) ; 15: 1295677, 2024.
Article in English | MEDLINE | ID: mdl-38572473

ABSTRACT

The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.


Subject(s)
Insulin , Liver , Pregnancy , Female , Humans , Liver/metabolism , Insulin/metabolism , Growth Hormone/metabolism , Glucagon/metabolism , Nutrients
6.
Biotechnol Biofuels Bioprod ; 17(1): 50, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566214

ABSTRACT

BACKGROUND: Autophagy is a crucial process of cellular self-destruction and component reutilization that can affect the accumulation of total fatty acids (TFAs) and carotenoids in microalgae. The regulatory effects of autophagy process in a docosahexaenoic acid (DHA) and carotenoids simultaneously producing microalga, Crypthecodinium sp. SUN, has not been studied. Thus, the autophagy inhibitor (3-methyladenine (MA)) and activator (rapamycin) were used to regulate autophagy in Crypthecodinium sp. SUN. RESULTS: The inhibition of autophagy by 3-MA was verified by transmission electron microscopy, with fewer autophagy vacuoles observed. Besides, 3-MA reduced the glucose absorption and intracellular acetyl-CoA level, which resulting in the decrease of TFA and DHA levels by 15.83 and 26.73% respectively; Surprisingly, 3-MA increased intracellular reactive oxygen species level but decreased the carotenoids level. Comparative transcriptome analysis showed that the downregulation of the glycolysis, pentose phosphate pathway and tricarboxylic acid cycle may underlie the decrease of acetyl-CoA, NADPH and ATP supply for fatty acid biosynthesis; the downregulation of PSY and HMGCR may underlie the decreased carotenoids level. In addition, the class I PI3K-AKT signaling pathway may be crucial for the regulation of carbon and energy metabolism. At last, rapamycin was used to activate autophagy, which significantly enhanced the cell growth and TFA level and eventually resulted in 1.70-fold increase in DHA content. CONCLUSIONS: Our findings indicate the mechanisms of autophagy in Crypthecodinium sp. SUN and highlight a way to manipulate cell metabolism by regulating autophagy. Overall, this study provides valuable insights to guide further research on autophagy-regulated TFA and carotenoids accumulation in Crypthecodinium sp. SUN.

7.
ACS Appl Mater Interfaces ; 16(17): 22411-22420, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38632871

ABSTRACT

Massive production of SiO2 nanofibers with both high durability and exceptional performance remains a significant challenge. Herein, a novel approach was introduced to achieve the massive production of SiO2 nanofibers with lotus-leaf-inspired surfaces by combining solution blowing spinning (SBS) and the polymer-derived ceramics method. Based on the SBS technique, three types of precursor nanofiber products were fast spined with methyl silsesquioxane polymer and polymethyl hydrogen siloxane employed as Si sources. The flow rate of the SBS spined Si-based ceramic nanofibers was enhanced to 20 mL·h-1. Furthermore, through the integration of hydrophobic-oleophilic SiO2 nanoparticles into the precursor solution, SiO2 nanofibers with lotus-leaf nanoprotrusion surfaces were fabricated. Nanoparticle-decorated SiO2 fibers demonstrated excellent hydrophobicity (138.3°), compression resilience (∼60%), proficiency in organic pollutant adsorption, high-temperature resistance (∼1100 °C), and outstanding thermal insulation properties (thermal conductivity of 0.0165 W·(m·K)-1).

8.
J Invest Dermatol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38493385

ABSTRACT

Vascular endothelial cells (ECs), the inner layer of blood vessels, were previously considered to be a passive lining that facilitates cellular and molecular exchange. However, recent studies have revealed that ECs can respond to various stimuli and actively regulate vascular function and skin inflammation. Specific subtypes of ECs are known to have significant roles in a diverse range of physiological and pathological processes in the skin. This review suggests that EC dysfunction is both causal and consequential in the pathogenesis of psoriasis. Further investigations into dysregulated pathways in EC dysfunction may provide new insights for the treatment of psoriasis.

9.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38436464

ABSTRACT

This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Connectome , Humans , Female , Breast Neoplasms/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Fear
10.
BMC Cancer ; 24(1): 315, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454349

ABSTRACT

PURPOSE: Rectal tumor segmentation on post neoadjuvant chemoradiotherapy (nCRT) magnetic resonance imaging (MRI) has great significance for tumor measurement, radiomics analysis, treatment planning, and operative strategy. In this study, we developed and evaluated segmentation potential exclusively on post-chemoradiation T2-weighted MRI using convolutional neural networks, with the aim of reducing the detection workload for radiologists and clinicians. METHODS: A total of 372 consecutive patients with LARC were retrospectively enrolled from October 2015 to December 2017. The standard-of-care neoadjuvant process included 22-fraction intensity-modulated radiation therapy and oral capecitabine. Further, 243 patients (3061 slices) were grouped into training and validation datasets with a random 80:20 split, and 41 patients (408 slices) were used as the test dataset. A symmetric eight-layer deep network was developed using the nnU-Net Framework, which outputs the segmentation result with the same size. The trained deep learning (DL) network was examined using fivefold cross-validation and tumor lesions with different TRGs. RESULTS: At the stage of testing, the Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD) were applied to quantitatively evaluate the performance of generalization. Considering the test dataset (41 patients, 408 slices), the average DSC, HD95, and MSD were 0.700 (95% CI: 0.680-0.720), 17.73 mm (95% CI: 16.08-19.39), and 3.11 mm (95% CI: 2.67-3.56), respectively. Eighty-two percent of the MSD values were less than 5 mm, and fifty-five percent were less than 2 mm (median 1.62 mm, minimum 0.07 mm). CONCLUSIONS: The experimental results indicated that the constructed pipeline could achieve relatively high accuracy. Future work will focus on assessing the performances with multicentre external validation.


Subject(s)
Deep Learning , Rectal Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neoadjuvant Therapy , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Retrospective Studies , Semantics
11.
PLoS One ; 19(3): e0298745, 2024.
Article in English | MEDLINE | ID: mdl-38536889

ABSTRACT

Aeromonas spp. are the opportunistic pathogens that infect both aquatic and terrestrial homeotherms. They were commonly present in aquatic environments, including effluent, tap water, marine, river, and lake, where they are often isolated from aquatic animals, including fish, molluscs, and crustaceans. The Aeromonas infections can cause sepsis, ulcer, and other symptoms, resulting in the death of massive aquatic animals. Therefore, the prevention and control of Aeromonas is of great significance for the healthy development of aquaculture. In this study, we used modern molecular methods to enhance disease control of Aeromonas isolates from freshwater fish in Hebei Province. A total of 130 Aeromonas spp. isolates were isolated from freshwater fish farms in Hengshui, Handan, and Shijiazhuang and all 130 Aeromonas spp. isolates were sequenced for species identification. Of the 130 Aeromonas spp. isolates, 104 isolates were successfully sequenced, and BLAST analysis showed that Aeromonas veronii was predominant in freshwater fish farms in Hebei Province. In addition, 26 antibiotic resistance profiles were obtained from 102 fully cultured isolates among the 104 Aeromonas spp. isolates whose species was primarily identified, and 44 multidrug-resistant bacteria among the 102 isolates were identified using an antibiotic susceptibility test. Using the Multilocus Sequence Typing (MLST) method, 33 out of 44 multidrug-resistant isolates with 14 non-Aeromonas reference strains were selected for phylogenetic and MLST analysis, and all 33 multidrug-resistant isolates were A. veronii. A total of 30 new Sequence Types (STs) were obtained by comparing concatenated sequences (gyrB-groL-gltA-metG-ppsA-recA) on PubMLST website. Furthermore, recombination event analysis detected using RDP5 and ClonalFrameML software 42 and 49 recombination events, respectively, and 22 recombination events were validated by four or more algorithms. Since mutation and recombination events increase clonal diversity and single housekeeping gene sequence alignments are limited for identifying species, we propose the use of multiple concatenated sequence loci to increase discriminatory power. In addition, we propose that the MLST method is an appropriate technique to study and develop the resistance mechanisms of multidrug-resistant Aeromonas and to identify Aeromonas systematically in complex samples obtained from the environment.


Subject(s)
Aeromonas , Animals , Multilocus Sequence Typing , Anti-Bacterial Agents/pharmacology , Phylogeny , Fishes/genetics , Drug Resistance, Multiple, Bacterial/genetics , Fresh Water
12.
Radiology ; 310(3): e232605, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530176

ABSTRACT

Background Detection of extranodal extension (ENE) at pathology is a poor prognostic indicator for rectal cancer, but whether ENE can be identified at pretreatment MRI is, to the knowledge of the authors, unknown. Purpose To evaluate the performance of pretreatment MRI in detecting ENE using a matched pathologic reference standard and to assess its prognostic value in patients with rectal cancer. Materials and Methods This single-center study included a prospective development data set consisting of participants with rectal adenocarcinoma who underwent pretreatment MRI and radical surgery (December 2021 to January 2023). MRI characteristics were identified by their association with ENE-positive nodes (χ2 test and multivariable logistic regression) and the performance of these MRI features was assessed (area under the receiver operating characteristic curve [AUC]). Interobserver agreement was assessed by Cohen κ coefficient. The prognostic value of ENE detected with MRI for predicting 3-year disease-free survival was assessed by Cox regression analysis in a retrospective independent validation cohort of patients with locally advanced rectal cancer (December 2019 to July 2020). Results The development data set included 147 participants (mean age, 62 years ± 11 [SD]; 87 male participants). The retrospective cohort included 110 patients (mean age, 60 years ± 9; 79 male participants). Presence of vessel interruption and fusion (both P < .001), heterogeneous internal structure, and the broken-ring and tail signs (odds ratio range, 4.10-23.20; P value range, <.001 to .002) were predictors of ENE at MRI, and together achieved an AUC of 0.91 (95% CI: 0.88, 0.93) in detecting ENE. Interobserver agreement was moderate for the presence of vessel interruption and fusion (κ = 0.46 for both) and substantial for others (κ = 0.61-0.67). The presence of ENE at pretreatment MRI was independently associated with worse 3-year disease-free survival (hazard ratio, 3.00; P = .02). Conclusion ENE can be detected at pretreatment MRI, and its presence was associated with worse prognosis for patients with rectal cancer. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Eberhardt in this issue.


Subject(s)
Neoplasms, Second Primary , Rectal Neoplasms , Humans , Male , Middle Aged , Extranodal Extension , Prognosis , Prospective Studies , Retrospective Studies , Rectal Neoplasms/diagnostic imaging , Magnetic Resonance Imaging
13.
Rheumatol Ther ; 11(2): 397-409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38349593

ABSTRACT

INTRODUCTION: Anemia and malnutrition are recognized indicators of suboptimal physical condition in chronic inflammatory diseases. This study aimed to examine the association between anemia, low body mass index (BMI), and clinical outcomes in axial spondyloarthritis (axSpA). METHOD: This cross-sectional analysis utilized data from the multicenter ChinaSpA cohort. A total of 4146 participants with axSpA were categorized into four groups based on BMI and hemoglobin levels: those with both anemia and low BMI, those with anemia only, those with low BMI only, and those with neither condition. Logistic regression analyses were performed to analyze the association between anemia, low BMI, inflammation status, functional impairment, and disease activity. RESULTS: Anemia was present in 13.94%, low BMI in 11.99%, and both conditions in 2.15% of axSpA participants. Those with both anemia and low BMI showed significantly higher levels of inflammation (hypersensitive C-reactive protein [hsCRP] 30.60 mg/L vs. 8.44 mg/L), functional impairment (Bath Ankylosing Spondylitis Functional Index [BASFI] 3.80 vs. 2.10), and disease activity (Bath Ankylosing Spondylitis Disease Activity Index [BASDAI] 4.52 ± 2.04 vs. 3.67 ± 2.21; Ankylosing Spondylitis Disease Activity Score calculated with C-reactive protein [ASDAS_CRP] 3.51 ± 1.10 vs. 2.62 ± 1.21) compared to those without these conditions. After adjusting for sex and age, significant associations were observed between elevated hsCRP levels and the presence of low BMI (odds ratio [OR] 1.44, 95% CI 1.17-1.78), anemia (OR 1.91, 95% CI 1.56-2.32), and their concurrent presence (OR 3.59, 95% CI 2.22-5.80). Similarly, increased BASFI was significantly associated with low BMI (OR 1.57, 95% CI 1.25-1.97), anemia (OR 1.47, 95% CI 1.19-1.80), and their combination (OR 3.11, 95% CI 2.02-4.78). CONCLUSION: All-cause anemia and low BMI are prevalent complications in patients with axSpA, exhibiting a significant correlation with elevated inflammation status and functional impairment. The simultaneous occurrence of anemia and low BMI particularly exacerbates clinical outcomes, emphasizing the critical role of comprehensive nutritional assessment and management in the therapeutic strategy for axSpA.

14.
BMC Plant Biol ; 24(1): 69, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38262947

ABSTRACT

BACKGROUND: The early allopolyploid Brassica napus was a hybrid of two Brassica species, that had undergone a whole genome duplication event followed by genome restructuring, including deletions and small scale duplications. A large number of homologous genes appeared functional divergence during species domestication. Due to the high conservation of de novo glycerolipid biosynthesis, multiple homologues of glycerol-3-phosphate acyltransferases (GPATs) have been found in B. napus. Moreover, the functional variances among these homologous GPAT-encoding genes are unclear. RESULTS: In this study, four B. napus homologous genes encoding glycerol-3-phosphate acyltransferase 9 (BnaGPAT9) were characterized. Although a bioinformatics analysis indicated high protein sequence similarity, the homologues demonstrated tissue-specific expression patterns and functional divergence. Yeast genetic complementation assays revealed that BnaGPAT9-A1/C1 homologues but not BnaGPAT9-A10/C9 homologues encoded functional GPAT enzymes. Furthermore, a single nucleotide polymorphism of BnaGPAT9-C1 that occurred during the domestication process was associated with enzyme activity and contributed to the fatty acid composition. The seed-specific expression of BnGPAT9-C11124A increased the erucic acid content in the transformant seeds. CONCLUSIONS: This study revealed that BnaGPAT9 gene homologues evolved into functionally divergent forms with important roles in erucic acid biosynthesis.


Subject(s)
Brassica napus , Erucic Acids , Glycerol , Glycerol-3-Phosphate O-Acyltransferase , Saccharomyces cerevisiae , Seeds , Phosphates
15.
Biotechnol Biofuels Bioprod ; 17(1): 1, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172878

ABSTRACT

BACKGROUND: The induction of lipid and astaxanthin accumulation in microalgae is often achieved through abiotic stress. However, this approach usually leads to oxidative stress, which results in relatively low growth rate. Phytohormones, as important small molecule signaling substances, not only affect the growth and metabolism of microalgae but also influence the intracellular reactive oxygen species level. This study aimed to screen phytohormones that could promote the fatty acids and astaxanthin yield of heterotrophic Chromochloris zofingiensis without causing oxidative damage, and further investigate the underlying mechanisms. RESULTS: In the present study, among all the selected phytohormones, the addition of exogenous salicylic acid (SA) could effectively promote cell growth along with the yield of total fatty acids (TFA) and astaxanthin in heterotrophic C. zofingiensis. Notably, the highest yields of TFA and astaxanthin were achieved at 100 µM SA, 43% and 97.2% higher compared with the control, respectively. Interestingly, the intracellular reactive oxygen species (ROS) levels, which are usually increased with elevated TFA content under abiotic stresses, were significantly decreased by SA treatment. Comparative transcriptome analysis unveiled significant alterations in overall carbon metabolism by SA. Specifically, the upregulation of fatty acid synthesis pathway, upregulation of ß-carotene-4-ketolase (BKT) in carotenoid synthesis aligned with biochemical findings. Weighted gene co-expression network analysis highlighted ABC transporters and GTF2B-like transcription factor as potential key regulators. CONCLUSION: This study found that salicylic acid can serve as an effective regulator to promote the celling growth and accumulation of fatty acids and astaxanthin in heterotrophic C. zofingiensis without ROS elevation, which provides a promising approach for heterotrophic production of TFA and astaxanthin without growth inhibition.

16.
Br J Dermatol ; 190(4): 536-548, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37979162

ABSTRACT

BACKGROUND: Skin barrier dysfunction may both initiate and aggravate skin inflammation. However, the mechanisms involved in the inflammation process remain largely unknown. OBJECTIVES: We sought to determine how skin barrier dysfunction enhances skin inflammation and molecular mechanisms. METHODS: Skin barrier defect mice were established by tape stripping or topical use of acetone on wildtype mice, or filaggrin deficiency. RNA-Seq was employed to analyse the differentially expressed genes in mice with skin barrier defects. Primary human keratinocytes were transfected with formylpeptide receptor (FPR)1 or protein kinase R-like endoplasmic reticulum (ER) kinase (PERK) small interfering RNA to examine the effects of these gene targets. The expressions of inflammasome NOD-like receptor (NLR)C4, epidermal barrier genes and inflammatory mediators were evaluated. RESULTS: Mechanical (tape stripping), chemical (acetone) or genetic (filaggrin deficiency) barrier disruption in mice amplified the expression of proinflammatory genes, with transcriptomic profiling revealing overexpression of formylpeptide receptor (Fpr1) in the epidermis. Treatment with the FPR1 agonist fMLP in keratinocytes upregulated the expression of the NLRC4 inflammasome and increased interleukin-1ß secretion through modulation of ER stress via the PERK-eIF2α-C/EBP homologous protein pathway. The activation of the FPR1-NLRC4 axis was also observed in skin specimens from old healthy individuals with skin barrier defect or elderly mice. Conversely, topical administration with a FPR1 antagonist, or Nlrc4 silencing, led to the normalization of barrier dysfunction and alleviation of inflammatory skin responses in vivo. CONCLUSIONS: In summary, our findings show that the FPR1-NLRC4 inflammasome axis is activated upon skin barrier disruption and may explain exaggerated inflammatory responses that are observed in disease states characterized by epidermal dysfunction. Pharmacological inhibition of FPR1 or NLRC4 represents a potential therapeutic target.


Subject(s)
Dermatitis , Filaggrin Proteins , Animals , Humans , Mice , Acetone/metabolism , Acetone/pharmacology , Dermatitis/metabolism , Epidermis/metabolism , Inflammasomes/metabolism , Inflammation , Keratinocytes/metabolism , NLR Proteins/metabolism
17.
Biotechnol Biofuels Bioprod ; 16(1): 184, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017535

ABSTRACT

BACKGROUND: Ensiling technology holds promise for preserving and providing high-quality forage. However, the preservation of rice straw poses challenges due to its high lignocellulosic content and low water-soluble carbohydrate levels. Developing highly effective lactic acid bacteria (LAB) for rice straw silage remains a priority. RESULTS: This study evaluated the impact of three LAB strains, Lactobacillus brevis R33 (Lac33), L. buchneri R17 (Lac17), and Leuconostoc pseudomesenteroides (Leu), on the fermentation quality of rice straw silage. Rice straw silage inoculated with Lac33 alone or in combination with other strains exhibited significantly lower neutral detergent fiber (NDF) (66.5% vs. 72.3%) and acid detergent fiber (ADF) (42.1% vs. 47%) contents, along with higher lactic acid (19.4 g/kg vs. not detected) and propionic acid (2.09 g/kg vs. 1.54 g/kg) contents compared to control silage. Bacterial community analysis revealed Lactobacillus dominance (> 80%) and suppression of unwanted Enterobacter and Clostridium. Metabolomic analysis highlighted increased carbohydrates and essential amino acids, indicating improved nutrient values in Lac33-inoculated rice straw silage and a potential explanation for Lac33 dominance. CONCLUSIONS: This research identified a highly efficient LAB candidate for rice straw silage, advancing our comprehension of fermentation from integrated microbiology and metabolomic perspectives.

18.
Bioresour Technol ; 389: 129850, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37813314

ABSTRACT

Low (15 °C) and high (35 °C) temperatures significantly increased DHA as a percentage of total fatty acids (TFAs) to 43.6 % and 40.46 %, respectively (1.28- and 1.18-fold of that at 25 °C, respectively). The incompleteness of the FAS pathway indicates that DHA synthesis does not occur via this pathway. Meanwhile, Comparative transcriptome analysis showed that the PUFA synthase pathway might be responsible for DHA synthesis in C. sp. SUN. Additionally, the three diacylglycerol acyltransferases all had a substrate preference for saturated fatty acid (SFA)-CoA, which also contributed to the decreased SFA and increased DHA at both low and high temperatures. Additionally, WGCNA analysis identifies key regulatory genes that may be involved in temperature-regulated DHA proportion. The findings of this study indicate the mechanisms of temperature-regulated DHA accumulation in C. sp. SUN and shed light on the manipulation of DHA proportion by changes in temperature.


Subject(s)
Docosahexaenoic Acids , Fatty Acids , Fatty Acids/metabolism , Diacylglycerol O-Acyltransferase , Temperature , Diglycerides , Fatty Acids, Unsaturated
19.
Nutrients ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836445

ABSTRACT

BACKGROUND: Osteoporosis, which is a bone disease, is characterized by low bone mineral density and an increased risk of fractures. The heel bone mineral density is often used as a representative measure of overall bone mineral density. Lipid metabolism, which includes processes such as fatty acid metabolism, glycerol metabolism, inositol metabolism, bile acid metabolism, carnitine metabolism, ketone body metabolism, sterol and steroid metabolism, etc., may have an impact on changes in bone mineral density. While some studies have reported correlations between lipid metabolism and heel bone mineral density, the overall causal relationship between metabolites and heel bone mineral density remains unclear. OBJECTIVE: to investigate the causal relationship between lipid metabolites and heel bone mineral density using two-sample Mendelian randomization analysis. METHODS: Summary-level data from large-scale genome-wide association studies were extracted to identify genetic variants linked to lipid metabolite levels. These genetic variants were subsequently employed as instrumental variables in Mendelian randomization analysis to estimate the causal effects of each lipid metabolite on heel bone mineral density. Furthermore, metabolites that could potentially be influenced by causal relationships with bone mineral density were extracted from the KEGG and WikiPathways databases. The causal associations between these downstream metabolites and heel bone mineral density were then examined. Lastly, a sensitivity analysis was conducted to evaluate the robustness of the results and address potential sources of bias. RESULTS: A total of 130 lipid metabolites were analyzed, and it was found that acetylcarnitine, propionylcarnitine, hexadecanedioate, tetradecanedioate, myo-inositol, 1-arachidonoylglycerophosphorine, 1-linoleoylglycerophoethanolamine, and epiandrosterone sulfate had a causal relationship with heel bone mineral density (p < 0.05). Furthermore, our findings also indicate an absence of causal association between the downstream metabolites associated with the aforementioned metabolites identified in the KEGG and WikiPathways databases and heel bone mineral density. CONCLUSION: This work supports the hypothesis that lipid metabolites have an impact on bone health through demonstrating a causal relationship between specific lipid metabolites and heel bone mineral density. This study has significant implications for the development of new strategies to osteoporosis prevention and treatment.


Subject(s)
Bone Density , Osteoporosis , Humans , Bone Density/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Heel , Osteoporosis/genetics , Lipids , Inositol , Polymorphism, Single Nucleotide
20.
Nat Commun ; 14(1): 6490, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838791

ABSTRACT

A neuron's regenerative capacity is governed by its intrinsic and extrinsic environment. Both peripheral and central neurons exhibit cell-type-dependent axon regeneration, but the underlying mechanism is unclear. Glia provide a milieu essential for regeneration. However, the routes of glia-neuron signaling remain underexplored. Here, we show that regeneration specificity is determined by the axotomy-induced Ca2+ transients only in the fly regenerative neurons, which is mediated by L-type calcium channels, constituting the core intrinsic machinery. Peripheral glia regulate axon regeneration via a three-layered and balanced modulation. Glia-derived tumor necrosis factor acts through its neuronal receptor to maintain calcium channel expression after injury. Glia sustain calcium channel opening by enhancing membrane hyperpolarization via the inwardly-rectifying potassium channel (Irk1). Glia also release adenosine which signals through neuronal adenosine receptor (AdoR) to activate HCN channels (Ih) and dampen Ca2+ transients. Together, we identify a multifaceted glia-neuron coupling which can be hijacked to promote neural repair.


Subject(s)
Axons , Calcium Channels , Animals , Axons/metabolism , Calcium Channels/metabolism , Drosophila/metabolism , Nerve Regeneration , Neurons/metabolism , Neuroglia/metabolism , Calcium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...