Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.293
Filter
1.
PLoS Med ; 21(5): e1004389, 2024 May.
Article in English | MEDLINE | ID: mdl-38728364

ABSTRACT

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Camptothecin , Cetuximab , Colorectal Neoplasms , Fluorouracil , Leucovorin , Liver Neoplasms , Organoplatinum Compounds , Proto-Oncogene Proteins B-raf , Humans , Cetuximab/administration & dosage , Cetuximab/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Male , Middle Aged , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Female , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Leucovorin/therapeutic use , Leucovorin/administration & dosage , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Aged , Adult , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Camptothecin/administration & dosage , Treatment Outcome , ras Proteins/genetics
2.
Int J Biol Macromol ; 269(Pt 2): 132214, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729489

ABSTRACT

Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.

3.
Sci Rep ; 14(1): 10043, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698145

ABSTRACT

In this work, we present fabricated magnetic tunnel junctions (MTJs) that can serve as magnetic memories (MMs) or vortex spin-torque nano-oscillators (STNOs) depending on the device geometry. We explore the heating effect on the devices to study how the performance of a neuromorphic computing system (NCS) consisting of MMs and STNOs can be enhanced by temperature. We further applied a neural network for waveform classification applications. The resistance of MMs represents the synaptic weights of the NCS, while temperature acts as an extra degree of freedom in changing the weights and TMR, as their anti-parallel resistance is temperature sensitive, and parallel resistance is temperature independent. Given the advantage of using heat for such a network, we envision using a vertical-cavity surface-emitting laser (VCSEL) to selectively heat MMs and/or STNO when needed. We found that when heating MMs only, STNO only, or both MMs and STNO, from 25 to 75 °C, the output power of the STNO increases by 24.7%, 72%, and 92.3%, respectively. Our study shows that temperature can be used to improve the output power of neural networks, and we intend to pave the way for future implementation of a low-area and high-speed VCSEL-assisted spintronic NCS.

4.
Tissue Cell ; 88: 102411, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38781791

ABSTRACT

BACKGROUND: Ischemia reperfusion (I/R) injury is a frequent occurrence during liver transplantation surgery, resulting from the temporary cessation of blood flow and subsequent restoration of blood flow. Serious I/R injury is a significant factor causing transplant failure. Hepatic I/R process is characterized by excessive inflammation, oxidation, and apoptosis. Crocetin (Crt) is a natural compound exhibiting beneficial roles in various I/R-induced organ damages. However, Crt's potential role in hepatic I/R remains unexplored. OBJECTIVE AND METHODS: In order to reveal the impact of Crt on hepatic I/R and the associated signaling pathway, we utilized a syngeneic orthotopic liver transplantation rat model to induce hepatic I/R injury. RESULTS: Pretreatment with Crt significantly mitigated hepatic I/R injury. This was evident by decreased activities of serum ALT, AST and LDH, indicating improved liver function. Crt treatment also alleviated oxidative stress, as demonstrated by decreased serum MDA content and elevated serum SOD and GSH-Px activities. Furthermore, Crt suppressed inflammatory responses by downregulating both the serum and liver IL-1ß, IL-6 and TNF-α while upregulating IL-10 expression. Additionally, Crt reduced apoptosis by decreasing pro-apoptotic Bax, cleaved caspase-3 and cleaved caspase-9, while increasing anti-apoptotic Bcl2 expression. Notably, these protective effects of Crt were dose-dependent. Moreover, our data indicates that Crt plays protective functions during hepatic I/R via disrupting Keap1/Nrf2 interaction and activating Nrf2/HO-1 signaling. This was further supported by observations of alleviated hepatic histopathological changes in I/R rats treated with Crt. CONCLUSIONS: Crt shows potential as a therapeutic agent for preventing hepatic I/R injury during clinical liver transplantation.

5.
PLoS One ; 19(5): e0295350, 2024.
Article in English | MEDLINE | ID: mdl-38748674

ABSTRACT

BACKGROUND: Talar fractures often require osteotomy during surgery to achieve reduction and screw fixation of the fractured fragments due to limited visualization and operating space of the talar articular surface. The objective of this study was to evaluate the horizontal approach to the medial malleolus facet by maximizing exposure through dorsiflexion and plantarflexion positions. METHODS: In dorsiflexion, plantarflexion, and functional foot positions, we respectively obtained the anterior and posterior edge lines of the projection of the medial malleolus on the medial malleolar facet. The talar model from Mimics was imported into Geomagic software for image refinement. Then Solidworks software was used to segment the medial surface of the talus and extend the edge lines from the three positions to project them onto the "semicircular" base for 2D projection. The exposed area in different positions, the percentage of total area it represents, and the anatomic location of the insertion point at the groove between the anteroposternal protrusions of the medial malleolus were calculated. RESULTS: The mean total area of the "semicircular" region on the medial malleolus surface of the talus was 542.10 ± 80.05 mm2. In the functional position, the exposed mean area of the medial malleolar facet around the medial malleolus both anteriorly and posteriorly was 141.22 ± 24.34 mm2, 167.58 ± 22.36mm2, respectively. In dorsiflexion, the mean area of the posterior aspect of the medial malleolar facet was 366.28 ± 48.12 mm2. In plantarflexion, the mean of the anterior aspect of the medial malleolar facet was 222.70 ± 35.32 mm2. The mean overlap area of unexposed area in both dorsiflexion and plantarflexion was 23.32 ± 5.94 mm2. The mean percentage of the increased exposure area in dorsiflexion and plantarflexion were 36.71 ± 3.25% and 15.13 ± 2.83%. The mean distance from the insertion point to the top of the talar dome was 10.69 ± 1.24 mm, to the medial malleolus facet border of the talar trochlea was 5.61 ± 0.96 mm, and to the tuberosity of the posterior tibiotalar portion of the deltoid ligament complex was 4.53 ± 0.64 mm. CONCLUSIONS: Within the 3D model, we measured the exposed area of the medial malleolus facet in different positions and the anatomic location of the insertion point at the medial malleolus groove. When the foot is in plantarflexion or dorsiflexion, a sufficiently large area and operating space can be exposed during surgery. The data regarding the exposed visualization area and virtual screws need to be combined with clinical experience for safer reduction and fixation of fracture fragments. Further validation of its intraoperative feasibility will require additional clinical research.


Subject(s)
Talus , Humans , Male , Fractures, Bone/surgery , Fracture Fixation, Internal/methods , Female , Adult , Bone Screws , Ankle Fractures/surgery , Ankle Fractures/diagnostic imaging
7.
Ultrason Sonochem ; 106: 106878, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38669797

ABSTRACT

This study aimed to elucidate the impact of ultrasound-assisted cellulase (UC) pretreatment on nutrients, phytic acid, and the bioavailability of phenolics during brown rice sprouting. It sought to unveil the underlying mechanisms by quantifying the activity of key enzymes implicated in these processes. The sprouted brown rice (SBR) surface structure was harmed by the UC pretreatment, which also increased the amount of γ-oryzanol and antioxidant activity in the SBR. Concurrently, the UC pretreatment boosted the activity of phytase, glutamate decarboxylase, succinate semialdehyde dehydrogenase, Gamma-aminobutyric acid (GABA) transaminase, chalcone isomerase, and phenylalanine ammonia lyase, thereby decreasing the phytic acid content and increasing the GABA, flavonoid, and phenolic content in SBR. In addition, UC-pretreated SBR showed increased phenolic release and bioaccessibility during in vitro digestion when compared to the treated group. These findings might offer theoretical direction for using SBR to maximize value.

8.
Exp Ther Med ; 27(5): 229, 2024 May.
Article in English | MEDLINE | ID: mdl-38596661

ABSTRACT

The mechanism by which ubiquitin-specific protease 18 (USP18) (enzyme commission: 3.4.19.12) inhibition in cancer promotes cell pyroptosis via the induction of interferon (IFN)-stimulated genes has been recently demonstrated. It is also known that USP18 influences the epithelial-mesenchymal transition of glioma cells. In the present study, the upregulation of USP18 in glioma was revealed through bulk transcriptome analysis, which was associated with poor prognosis in patients with glioma. Furthermore, USP18 levels affected the response to immunotherapy in patients with glioma. Single-cell transcriptome and enrichment analyses demonstrated that USP18 was associated with type 1 IFN responses in glioma T cells. To demonstrate the effect of USP18 expression levels on glioma cells, USP18 expression was knocked down in U251 and U87MG ATCC cell lines. A subsequent Cell Counting Kit-8 assay revealed that glioma cell viability was significantly decreased 4 days after USP18 knockdown. In addition, the knockdown of USP18 expression significantly inhibited the clonogenicity of U251 and U87MG ATCC cells. In conclusion, the present study demonstrated that knockdown of USP18 expression inhibited the proliferation of glioma cells, which may be mediated by the effect of USP18 on the IFN-I response.

9.
Circ J ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631864

ABSTRACT

BACKGROUND: Foam cell formation is an important step for atherosclerosis (AS) progression. We investigated the mechanism by which the long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) regulates foam cell formation during AS progression.Methods and Results: An in vivo AS model was created by feeding ApoE-/-mice a high-fat diet. Oxidized low-density lipoprotein (ox-LDL)-stimulated macrophages were used as a cellular AS model. Interactions between NEAT1, miR-17-5p, itchy E3 ubiquitin protein ligase (ITCH) and liver kinase B1 (LKB1) were analyzed. NEAT1 and ITCH were highly expressed in clinical samples collected from 10 AS patients and in ox-LDL-treated macrophages, whereas expression of both miR-17-5p and LKB1 was low. ITCH knockdown inhibited ox-LDL-induced lipid accumulation and LDL uptake in macrophages. Mechanistically speakingly, ITCH promoted LDL uptake and lipid accumulation in macrophages by mediating LKB1 ubiquitination degradation. NEAT1 knockdown reduced LDL uptake and lipid accumulation in macrophages and AS progression in vivo. NEAT1 promoted ITCH expression in macrophages by acting as a sponge for miR-17-5p. Inhibition of miR-17-5p facilitated ox-LDL-induced increase in LDL uptake and lipid accumulation in macrophages, which was reversed by NEAT1/ITCH knockdown. CONCLUSIONS: NEAT1 accelerated foam cell formation during AS progression through the miR-17-5p/ITCH/LKB1 axis.

10.
Tissue Eng Part A ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38661545

ABSTRACT

Spinal cord injury (SCI), caused by significant physical trauma, as well as other pathological conditions, results in electrical signaling disruption and loss of bodily functional control below the injury site. Conductive biomaterials have been considered a promising approach for treating SCI, owing to their ability to restore electrical connections between intact spinal cord portions across the injury site. In this study, we evaluated the ability of a conductive hydrogel, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), to restore electrical signaling and improve neuronal regeneration in a rat SCI model generated using the compression clip method. Gelatin or PAMB-G was injected at the SCI site, yielding three groups: Control (saline), Gelatin, and PAMB-G. During the 8-week study, PAMB-G, compared to Control, had significantly lower proinflammatory factor expression, such as for tumor necrosis factor -α (0.388 ± 0.276 for PAMB-G vs. 1.027 ± 0.431 for Control) and monocyte chemoattractant protein (MCP)-1 (0.443 ± 0.201 for PAMB-G vs. 1.662 ± 0.912 for Control). In addition, PAMB-G had lower astrocyte and microglia numbers (35.75 ± 4.349 and 40.75 ± 7.890, respectively) compared to Control (50.75 ± 6.5 and 64.75 ± 10.72) and Gelatin (48.75 ± 4.787 and 71.75 ± 7.411). PAMB-G-treated rats also had significantly greater preservation and regeneration of remaining intact neuronal tissue (0.523 ± 0.059% mean white matter in PAMB-G vs 0.377 ± 0.044% in Control and 0.385 ± 0.051% in Gelatin) caused by reduced apoptosis and increased neuronal growth-associated gene expression. All these processes stemmed from PAMB-G facilitating increased electrical signaling conduction, leading to locomotive functional improvements, in the form of increased Basso-Beattie-Bresnahan scores and steeper angles in the slope test (76.667 ± 5.164 for PAMB-G, vs. 59.167 ± 4.916 for Control and 58.333 ± 4.082 for Gelatin), as well as reduced gastrocnemius muscle atrophy (0.345 ± 0.085 for PAMB-G, vs. 0.244 ± 0.021 for Control and 0.210 ± 0.058 for Gelatin). In conclusion, PAMB-G injection post-SCI resulted in improved electrical signaling conduction, which contributed to lowered inflammation and apoptosis, increased neuronal growth, and greater bodily functional control, suggesting its potential as a viable treatment for SCI.

11.
Int J Surg ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38652147

ABSTRACT

BACKGROUND: We aimed to compare combined intraoperative chemotherapy and surgical resection with curative surgical resection alone in colorectal cancer patients. METHODS: We performed a multicenter, open-label, randomized, phase III trial. All eligible patients were randomized and assigned to intraoperative chemotherapy and curative surgical resection or curative surgical resection alone (1:1). Survival actualization after long-term follow-up was performed in patients analyzed on an intention-to-treat basis. RESULTS: From January 2011 to January 2016, 696 colorectal cancer patients were enrolled and randomly assigned to intraoperative chemotherapy and radical surgical resection (n=341) or curative surgical resection alone (n=344). Intraoperative chemotherapy with surgical resection showed no significant survival benefit over surgical resection alone in colorectal cancer patients (3-year DFS: 91.1% vs. 90.0%, P=0.328; 3-year OS: 94.4% vs. 95.9%, P=0.756). However, colon cancer patients benefitted from intraoperative chemotherapy, with a relative 4% reduction in liver and peritoneal metastasis (HR=0.336, 95% CI: 0.148-0.759, P=0.015) and a 6.5% improvement in 3-year DFS (HR=0.579, 95% CI: 0.353-0.949, P=0.032). Meanwhile, patients with colon cancer and abnormal pretreatment CEA levels achieved significant survival benefits from intraoperative chemotherapy (DFS: HR=0.464, 95% CI: 0.233-0.921, P=0.029 and OS: (HR=0.476, 95% CI: 0.223-1.017, P=0.049). CONCLUSIONS: Intraoperative chemotherapy showed no significant extra prognostic benefit in total colorectal cancer patients who underwent radical surgical resection; however, in colon cancer patients with abnormal pretreatment serum CEA levels (> 5 ng/ml), intraoperative chemotherapy could improve long-term survival.

12.
Immun Inflamm Dis ; 12(4): e1251, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607251

ABSTRACT

BACKGROUND: For a long time, the prevailing viewpoint suggests that shorter telomere contribute to chromosomal instability, which is a shared characteristic of both aging and cancer. The newest research presented that T cell immune deficiency rather than chromosome instability predisposes patients with short telomere syndromes to some cancers. However, the relationship between genetically determined telomere length (TL) and immune cells remains unclear. METHODS: The two-sample Mendelian randomization analysis was conducted to elucidate the potential causal relationship. The genetic data of TL and immune cells were obtained from the Genome-Wide Association Study. The inverse variance weighted (IVW) method was used to estimate the effects primarily and another four methods were as a supplement. Sensitivity analysis was used to test the results. RESULTS: The IVW method showed a significant correlation between TL and the percentage of T cells in lymphocytes (odds ratio [OR]: 1.222, 95% confidence interval [CI]: 1.014-1.472, p = .035), indicating that shorter TL significantly increases the risk of low T cell percentage. Further analysis of T cell subsets indicated that shorter TL may primarily lead to a lower percentage of Natural Killer T cells (OR: 1.574, 95% CI: 1.281-1.935, p < .001). Analysis of B cell subsets revealed that shorter TL may be associated with a higher percentage of Naive-mature B cells, and a lower percentage of Memory B cells. And the sensitivity analysis indicated the validity and robustness of our findings. CONCLUSION: In summary, our findings suggest that shorter TL may be associated with a decline in the percentage of T cell, as well as impediments in the differentiation of B cell, consequently leading to the onset of immunosenescence and immunodeficiency. The relevant mechanisms and potential therapeutic avenues still need further investigation.


Subject(s)
Genome-Wide Association Study , Growth Disorders , Hypercalcemia , Immunologic Deficiency Syndromes , Metabolic Diseases , Nephrocalcinosis , Thymus Gland/abnormalities , Humans , Mendelian Randomization Analysis , Lymphocytes
13.
PLoS One ; 19(4): e0298699, 2024.
Article in English | MEDLINE | ID: mdl-38574042

ABSTRACT

Sign language recognition presents significant challenges due to the intricate nature of hand gestures and the necessity to capture fine-grained details. In response to these challenges, a novel approach is proposed-Lightweight Attentive VGG16 with Random Forest (LAVRF) model. LAVRF introduces a refined adaptation of the VGG16 model integrated with attention modules, complemented by a Random Forest classifier. By streamlining the VGG16 architecture, the Lightweight Attentive VGG16 effectively manages complexity while incorporating attention mechanisms that dynamically concentrate on pertinent regions within input images, resulting in enhanced representation learning. Leveraging the Random Forest classifier provides notable benefits, including proficient handling of high-dimensional feature representations, reduction of variance and overfitting concerns, and resilience against noisy and incomplete data. Additionally, the model performance is further optimized through hyperparameter optimization, utilizing the Optuna in conjunction with hill climbing, which efficiently explores the hyperparameter space to discover optimal configurations. The proposed LAVRF model demonstrates outstanding accuracy on three datasets, achieving remarkable results of 99.98%, 99.90%, and 100% on the American Sign Language, American Sign Language with Digits, and NUS Hand Posture datasets, respectively.


Subject(s)
Random Forest , Sign Language , Humans , Pattern Recognition, Automated/methods , Gestures , Upper Extremity
14.
Polymers (Basel) ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674974

ABSTRACT

Due to the increasing amounts of textile waste, textile to textile recycling is of prime concern. Polyethylene terephthalate (PET) represents the most extensively used type of chemical fiber. Its spinnability suffers from impurities and degradation in the processing, which limits its recycling to new fibers. Here, recycled polyester is blended with a small amount of recycled nylon, and the regenerated fibers, which demonstrated good mechanical properties, were obtained via a melt spinning machine. The mechanical properties, thermal properties, rheological properties, and chemical structure of the modified recycled fibers were investigated. It was found that when compared with rPET-T fibers, the elongation at break of rPET-Ax fibers increased to 17.48%, and the strength at break decreased to 3.79 cN/dtex. The compatibility of PET and PA6 copolymer were enhanced by copolymers produced by in-situ reaction in the processing. Meanwhile, the existence of PA6 increases the crystallization temperature and improves the hydrophilicity of the fibers. This study realized the high-value recycling of waste PET fabric to new fibers, which opens a door for the large utilization of waste textiles.

15.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38608703

ABSTRACT

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Subject(s)
BRCA2 Protein , Breast Neoplasms , Glycolysis , Pyruvaldehyde , Animals , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , Mice , Humans , Female , Pyruvaldehyde/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Haploinsufficiency , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Mutation , DNA Damage , DNA Repair , Cell Line, Tumor
16.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489029

ABSTRACT

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Subject(s)
Capillary Permeability , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Animals , Extracellular Vesicles/metabolism , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Humans , Male , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Proteomics , Mice, Inbred C57BL
17.
J Tradit Chin Med ; 44(2): 303-314, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504536

ABSTRACT

OBJECTIVE: To investigate the impact of Yemazhui (Herba Eupatorii Lindleyani, HEL) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its underlying mechanism in vivo. METHODS: The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method. Then, HEL was found to suppress LPS-induced ALI in vivo. Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups: control, LPS, Dexamethasone (Dex), HEL low dose 6 g/kg (HEL-L), HEL medium dose 18 g/kg (HEL-M) and HEL high dose 54 g/kg (HEL-H) groups. The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model. Leukocyte counts, lung wet/dry weight ratio, as well as myeloperoxidase (MPO) activity were determined followed by the detection with hematoxylin and eosin staining, enzyme linked immunosorbent assay, quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Besides, to explore the effect of HEL on ALI-mediated intestinal flora, we performed 16s rRNA sequencing analysis of intestinal contents. RESULTS: HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance. Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats, inhibited leukocytes exudation and MPO activity, and improved the pathological injury of lung tissue. In addition, HEL reduced the expression of tumor necrosis factor-alpha, interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid and serum, and inhibited nuclear displacement of nuclear factor kappa-B p65 (NF-κBp65). And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88, NF-κBp65, phosphorylated inhibitor kappa B alpha (phospho-IκBα), nod-like receptor family pyrin domain-containing 3 protein (NLRP3), IL-1ß, and interleukin-18 (IL-18) in lung tissue, and regulated intestinal flora disturbance. CONCLUSIONS: In summary, our findings revealed that HEL has a protective effect on LPS-induced ALI in rats, and its mechanism may be related to inhibiting TLR4/ NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Rats , Male , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Lipopolysaccharides/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Pyrin Domain , RNA, Ribosomal, 16S , Rats, Sprague-Dawley , Signal Transduction , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Lung , Interleukin-6
18.
Sci Total Environ ; 926: 171984, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547983

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.


Subject(s)
Aphids , Insecticides , Nanospheres , Animals , Insecticides/metabolism , Zebrafish , Insecticide Resistance/genetics , Neonicotinoids/metabolism , Nitro Compounds/toxicity , Nitro Compounds/metabolism , Aphids/metabolism , Cytochrome P-450 Enzyme System/metabolism , Ampicillin
19.
Int J Biol Macromol ; 264(Pt 2): 130625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458295

ABSTRACT

Electrical stimulation modulates cell behavior and influences bacterial activity, so highly conductive, antimicrobial hydrogels are suitable for promoting wound healing. In this study, highly conductive and antimicrobial Ti3C2Tx (MXene) hydrogels composed of chitosan and poly(vinyl alcohol) and AgCu- H2PYDC MOF were developed. In PVACS/MOF/MXene (PCMM) hydrogels, the MXene layer acts as an electrical conductor. The electrical conductivity is 0.61 ± 0.01 S·cm-1. PCMM hydrogels modulate cell behavior and provide ES antimicrobial capacity under ES at 1 V. The metal ions of MOF form coordination with chitosan molecules and increase the cross-linking density between chitosan molecules, thus improving the mechanical properties of the hydrogel (tensile strength 0.088 ± 0.04 MPa, elongation at break 233 ± 11 %). The PCMM gels had good biocompatibility. The PCMM hydrogels achieved 100 % antibacterial activity against E. coli and S. aureus for 12 h. 1 V electrical stimulation of PCMM hydrogel accelerated the wound healing process in mice by promoting cell migration and neovascularization, achieving 97 ± 0.4 % wound healing on day 14. The hydrogel dressing PCMM-0.1 with MOF addition of 0.1 % had the best wound healing promoting effect and which is a promising dressing for promoting wound healing and is a therapeutic strategy worth developing.


Subject(s)
Chitosan , Nitrites , Transition Elements , Mice , Animals , Chitosan/pharmacology , Hydrogels/pharmacology , Escherichia coli , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/pharmacology
20.
Pestic Biochem Physiol ; 199: 105774, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458681

ABSTRACT

Aphis gossypii, a globally distributed and economically significant pest of several crops, is known to infest a wide range of host plants. Heat shock proteins (Hsps), acting as molecular chaperones, are essential for the insect's environmental stress responses. The present study investigated the molecular characteristics and expression patterns of AgHsp70, a heat shock protein gene, in Aphis gossypii. Our phylogenetic analysis revealed that AgHsp70 shared high similarity with homologs from other insects, suggesting a conserved function across species. The developmental expression profiles of AgHsp70 in A. gossypii showed that the highest transcript levels were observed in the fourth instar nymphs, while the lowest levels were detected in the third instar nymphs. Heat stress and exposure to four different xenobiotics (2-tridecanone, tannic acid, gossypol, and flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone)) significantly up-regulated AgHsp70 expression. Knockdown of AgHsp70 using RNAi obviously increased the susceptibility of cotton aphids to 2-tridecanone, gossypol and flupyradifurone. Dual-luciferase reporter assays revealed that gossypol and flupyradifurone significantly enhanced the promoter activity of AgHsp70 at a concentration of 10 mg/L. Furthermore, we identified the transcription factor heat shock factor (HSF) as a regulator of AgHsp70, as silencing AgHSF reduced AgHsp70 expression. Our results shed light on the role of AgHsp70 in xenobiotic adaptation and thermo-tolerance.


Subject(s)
4-Butyrolactone/analogs & derivatives , Aphids , Gossypol , Ketones , Polyphenols , Pyridines , Animals , Aphids/genetics , Aphids/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Gossypol/metabolism , Phylogeny , Xenobiotics/pharmacology , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...