Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542057

ABSTRACT

This study investigates the impact of SCs consumption by assessing the effects of three novel synthetic cannabinoids (SCs); MDMB-CHMINACA, 5F-ADB-PINACA, and APICA post-drug treatment. SCs are known for their rapid onset (<1 min) and prolonged duration (≥5 h). Therefore, this research aimed to assess behavioral responses and their correlation with endocannabinoids (ECs) accumulation in the hippocampus, and EC's metabolic enzymes alteration at different timeframes (1-3-5-h) following drug administration. Different extents of locomotive disruption and sustained anxiety-like symptoms were observed throughout all-encompassing timeframes of drug administration. Notably, MDMB-CHMINACA induced significant memory impairment at 1 and 3 h. Elevated levels of anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were detected 1 h post-MDMB-CHMINACA and 5F-ADB-PINACA administration. Reduced mRNA expression levels of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL) (AEA and 2-AG degrading enzymes, respectively), and brain-derived neurotrophic factor (BDNF) occurred at 1 h, with FAAH levels remaining reduced at 3 h. These findings suggest a connection between increased EC content and decreased BDNF expression following SC exposure. Cognitive disruption, particularly motor coordination decline and progressive loss manifested in a time-dependent manner across all the analyzed SCs. Our study highlights the importance of adopting a temporal framework when assessing the effects of SCs.


Subject(s)
Cannabinoids , Illicit Drugs , Endocannabinoids , Brain-Derived Neurotrophic Factor/genetics , Cannabinoids/pharmacology , Cannabinoids/metabolism , Illicit Drugs/metabolism
2.
Biochem Pharmacol ; 210: 115490, 2023 04.
Article in English | MEDLINE | ID: mdl-36893816

ABSTRACT

Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes developmental and reproductive disorders in pups due to the attenuated luteinizing hormone (LH) production during the perinatal stage; however, the administration of α-lipoic acid (LA) to TCDD-exposed pregnant rats reversed the attenuated LH production. Therefore, reproductive disorders in pups are expected to be ameliorated with LA supplementation. To address this issue, pregnant rats orally received low dose TCDD at gestational day 15 (GD15) and proceeded to parturition. The control received a corn oil vehicle. To examine the preventive effects of LA, supplementation with LA was provided until postnatal day 21. In this study, we demonstrated that maternal administration of LA restored the sexually dimorphic behavior of male and female offspring. TCDD-induced LA insufficiency is likely a direct cause of TCDD reproductive toxicity. In the analysis to clarify the mechanism of the decrease in LA, we found evidence suggesting that TCDD inhibits the synthesis and increases the utilization of S-adenosylmethionine (SAM), a cofactor for LA synthesis, resulting in a decrease in the SAM level. Furthermore, folate metabolism, which is involved in SAM synthesis, is disrupted by TCDD, which may adversely affect infant growth. Maternal supplementation of LA restored SAM to its original level in the fetal hypothalamus; in turn, SAM ameliorated abnormal folate consumption and suppressed aryl hydrocarbon receptor activation induced by TCDD. The study demonstrates that the application of LA could prevent and recover next-generation dioxin reproductive toxicity, which provides the potential to establish effective protective measures against dioxin toxicity.


Subject(s)
Folic Acid , Maternal Exposure , Polychlorinated Dibenzodioxins , Prenatal Exposure Delayed Effects , Sex Characteristics , Sexual Development , Thioctic Acid , Animals , Female , Male , Pregnancy , Rats , Fetus/drug effects , Fetus/metabolism , Folic Acid/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Maternal Exposure/adverse effects , Polychlorinated Dibenzodioxins/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/prevention & control , S-Adenosylmethionine/metabolism , Sexual Development/drug effects , Thioctic Acid/administration & dosage , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Reproduction/drug effects
3.
J Chromatogr Sci ; 61(2): 103-109, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36478174

ABSTRACT

To evaluate the quality and quantify bioactive constituents in different parts of Angelicae Sinensis Radix, an efficient, high-speed, high-sensitivity high-performance liquid chromatography and triple quadrupole mass spectrometry method was used for simultaneous detection of 12 chemical compounds including L-tryptophan, chlorogenic acid, caffeic acid, ferulic acid, isoferulic acid, senkyunolide I, guanosine, proline, L-glutamine, γ-aminobutyric acid, glutamic acid, and arginine in 52 batches of Angelicae Sinensis Radix from Gansu, China. The established methods were validated by good linearity (R2≥0.9921), limits of detection (0.0001-0.0156 µg/mL), limits of quantitation (0.0006-0.0781 µg/mL), stability (RSD≤7.77%), repeatability (RSD≤6.79%), intra- and interday precisions (RSD≤6.00% and RSD≤6.39%, respectively) and recovery (90.90-107.16%). According to the quantitative results, the contents of the hydrophilic compounds were higher in the head, while the medium and weak polar components were mainly concentrated in the tail. Finally, principal component analysis results revealed that Angelicae Sinensis Radix could be divided into different medicinal sites based on polar components such as amino acids, nucleosides. The combination of liquid chromatography-tandem mass spectrometry and principal component analysis is a simple and reliable method for pattern recognition and quality evaluation of Angelicae Sinensis Radix.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Tandem Mass Spectrometry/methods , Chemometrics , Angelica sinensis/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry
4.
Sci Rep ; 11(1): 18532, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535743

ABSTRACT

Leydig cells in the testes produce testosterone in the presence of gonadotropins. Therefore, male testosterone levels must oscillate within a healthy spectrum, given that elevated testosterone levels augment the risk of cardiovascular disorders. We observed that the expression of death-associated protein-like 1 (DAPL1), which is involved in the early stages of epithelial differentiation and apoptosis, is considerably higher in the testes of sexually mature mice than in other tissues. Accordingly, Dapl1-null mice were constructed to evaluate this variation. Notably, in these mice, the testicular levels of steroidogenic acute regulatory protein (StAR) and serum testosterone levels were significantly elevated on postnatal day 49. The findings were confirmed in vitro using I-10 mouse testis-derived tumor cells. The in vivo and in vitro data revealed the DAPL1-regulated the expression of StAR involving altered transcription of critical proteins in the protein kinase A and CREB/CREM pathways in Leydig cells. The collective findings implicate DAPL1 as an important factor for steroidogenesis regulation, and DAPL1 deregulation may be related to high endogenous levels of testosterone.


Subject(s)
Leydig Cells/metabolism , Testosterone/metabolism , Animals , Cell Line , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Testis/metabolism
5.
J Sep Sci ; 44(5): 1062-1071, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33378573

ABSTRACT

Angelicae Sinensis Radix is a world-renowned herbal medicine originating in China. Owing to many environmental and geographical factors, Angelicae Sinensis Radix from various origins may have a difference in the content of ingredients, which made the confusion in the clinical practice and market. Herein, a binary chromatographic fingerprinting analysis method is developed via hydrophilic interaction chromatography and reversed-phase liquid chromatography to obtain more chemical information. Following that, an ultra-performance liquid chromatography with a triple quadrupole mass spectrometry method is furnished to simultaneously detect 17 ingredients of Angelicae Sinensis Radix gathered from six geographic zones in China. Eventually, the principal component analysis is successfully carried out to classify and differentiate the Angelicae Sinensis Radix from different origins, meanwhile the quantitative volcano plots was used to observe the changes of ingredient trends vividly. Accordingly, the proposed binary chromatography and triple quadrupole tandem mass spectrometry coupled with multivariate statistical analysis can be utilized as a facile and reliable method for origin tracing and quality control of Angelicae Sinensis Radix.


Subject(s)
Angelica sinensis/chemistry , Drugs, Chinese Herbal/analysis , Plants, Medicinal/chemistry , China , Chromatography, High Pressure Liquid , Multivariate Analysis , Tandem Mass Spectrometry
6.
Front Pharmacol ; 10: 1305, 2019.
Article in English | MEDLINE | ID: mdl-31798444

ABSTRACT

Background: Pulmonary fibrosis (PF) is a devastating interstitial lung disease and characterized by an abnormal accumulation of extracellular matrix (ECM). Nintedanib (NDN) and pirfenidone are two approved therapies for PF, but their potential side-effects have been reported. Recently, the use of natural supplements for PF is attracting attention. Alpha-mangostin (α-MG) is an active xanthone-type compound isolated from the nutritious fruit mangosteen. Purpose: In the present study, the potential effect and underlying mechanism of α-MG were evaluated in bleomycin (BLM)-induced PF and activated primary lung fibroblasts (PLFs). Methods: Histopathological changes and collagen deposition were analyzed via hematoxylin-eosin staining and Masson staining, the expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (NOX4) involved in oxidative stress in lung tissues was analyzed by immunochemistry staining. The expressions of α-smooth muscle actin (α-SMA), collagen I (Col I), p-adenosine 5'-monophosphate-activated protein kinase (AMPK)/AMPK, and NOX4 were detected by Western blot, immunofluorescence or RT-PCR, and effects of α-MG on cell viability were detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Results: In vivo results demonstrated that α-MG treatment (10 mg/kg/day) significantly ameliorated BLM-induced deposition of ECM in lung tissues. Moreover, α-MG could inhibit protein expressions of α-SMA and Col I as well as its mRNA levels. In addition, α-MG also significantly inhibited transforming growth factor-ß1/Smad2/3 pathway and regulated the protein expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in lung tissues. In vitro results demonstrated that α-MG significantly increased p-AMPK/AMPK but reduced the protein expression level of α-SMA and Col I as well as NOX4 in activated PLFs. Further study demonstrated that these improvement effects were significantly blocked by compound C. Conclusion: α-MG treatment significantly decreased oxidative stress in lungs partly by activating AMPK mediated signaling pathway in BLM-induced PF and activated PLFs and decreased the deposition of ECM. The present study provides pharmacological evidence to support therapeutic application of α-MG in the treatment of PF.

7.
Sci Rep ; 9(1): 9621, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270353

ABSTRACT

The impairment of learning and memory is a well-documented effect of both natural and synthetic cannabinoids. In the present study, we aimed to investigate the effect of acute administration of JWH-018, a synthetic cannabinoid, on the hippocampal metabolome to assess biochemical changes in vivo. JWH-018 elevated levels of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The increase of endocannabinoid levels in response to JWH-018 could be inhibited by co-administration of AM251, a CB1 receptor antagonist. Biochemical analyses revealed that this was the result of suppression of two hydrolases involved in endocannabinoid degradation (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL]). Additionally, we showed that JWH-018 causes a reduction in the levels of brain-derived neurotrophic factor (BDNF), which is known to modulate synaptic plasticity and adaptive processes underlying learning and memory. The decrease of BDNF following JWH-018 treatment was also rescued by co-administration of AM251. As both endocannabinoids and BDNF have been shown to modulate learning and memory in the hippocampus, the alteration of their levels in response to JWH-018 may explain the contribution of synthetic cannabinoids to impairment of memory.


Subject(s)
Brain/drug effects , Brain/physiology , Cannabinoids/pharmacology , Endocannabinoids/biosynthesis , Indoles/pharmacology , Naphthalenes/pharmacology , Animals , Biomarkers , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cannabinoids/adverse effects , Cannabinoids/chemistry , Hippocampus/metabolism , Indoles/adverse effects , Indoles/chemistry , Learning/drug effects , Memory/drug effects , Metabolome , Metabolomics/methods , Mice , Naphthalenes/adverse effects , Naphthalenes/chemistry , Spectrum Analysis
8.
Front Pharmacol ; 10: 151, 2019.
Article in English | MEDLINE | ID: mdl-30890932

ABSTRACT

Pulmonary fibrosis is common in a variety of inflammatory lung diseases, there is currently no effective clinical drug treatment. It has been reported that the ethanol extract of Eclipta prostrata L. can improve the lung collagen deposition and fibrosis pathology induced by bleomycin (BLM) in mice. In the present study, we studied whether wedelolactone (WEL), a major coumarin ingredient of E. prostrata, provided protection against BLM-induced pulmonary fibrosis. ICR or C57/BL6 strain mice were treated with BLM to establish lung fibrosis model. WEL (2 or 10 mg/kg) was given daily via intragastric administration for 2 weeks starting at 7-day after intratracheal instillation. WEL at 10 mg/kg significantly reduced BLM-induced inflammatory cells infiltration, pro-inflammatory factors expression, and collagen deposition in lung tissues. Additionally, treatment with WEL also impaired BLM-induced increases in fibrotic marker expression (collagen I and α-SMA) and decrease in an anti-fibrotic marker (E-cadherin). Treatment with WEL significantly prevented BLM-induced increase in TGF-ß1 and Smad2/3 phosphorylation in the lungs. WEL administration (10 mg/kg) also significantly promoted AMPK activation compared to model group in BLM-treated mice. Further investigation indicated that activation of AMPK by WEL can suppressed the transdifferentiation of primary lung fibroblasts and the epithelial mesenchymal transition (EMT) of alveolar epithelial cells, the inhibitive effects of WEL was significantly blocked by an AMPK inhibitor (compound C) in vitro. Together, these results suggest that activation of AMPK by WEL followed by reduction in TGFß1/Raf-MAPK signaling pathways may have a therapeutic potential in pulmonary fibrosis.

9.
Drug Metab Pharmacokinet ; 32(1): 108-111, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28111102

ABSTRACT

The chronic neurotoxicity of heroin on the nervous system is poorly understood. To address this issue, we comprehensively assessed the alteration of brain metabolomics caused by chronic heroin exposure and the withdrawal of heroin. Male C57BL/6J mice (n = 10) were given heroin (15 µmol/kg, i.p., twice a day) for 12 days while the withdrawal group received saline-treatment instead of heroin for the last two days. The control group received saline. We developed an UPLC-TOF/MS-based metabolomic approach to analyze the metabolites and carry out a metabolic pathway analysis in the brain. The major metabolites contributing to the discrimination were identified as amino acids, tricarboxylic-acid cycle intermediates, neurotransmitters, nucleotides and other compounds. A marked reduction in histidine and a slight but significant increase in phenylalanine and tryptophan were observed after heroin was withdrawn while the increased level of catecholamines was restored to baseline. Interestingly, N-acetylserotonin - a precursor of melatonin - was increased with the withdrawal of heroin while melatonin was markedly reduced along with the sub-chronic exposure to heroin. This shows that heroin disrupts not only the energy metabolism but also the biosynthesis of both catecholamines and melatonin in the mouse brain. Therefore, these substances are candidate biomarkers for chronic heroin-abuse.


Subject(s)
Brain/drug effects , Brain/metabolism , Energy Metabolism/drug effects , Heroin/administration & dosage , Heroin/toxicity , Metabolomics , Animals , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL
10.
Bioorg Med Chem Lett ; 23(9): 2636-41, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23511019

ABSTRACT

A new series of flavonoid derivatives were designed, synthesized and evaluated as potential multifunctional AChE inhibitors against Alzheimer's disease. Most of them exhibited potent AChE inhibitory activity, high selectivity for AChE over BuChE, and moderate to good inhibitory potency toward Aß aggregation. Specifically, compound 12c was the strongest AChE inhibitor, being 20-fold more potent than galanthamine and twofold more potent than tacrine, and it also had ability to inhibit Aß aggregation (close to the reference compound) and to function as a metal chelator. Molecular modeling and enzyme kinetic study revealed that it targeted both the catalytic active site and the peripheral anionic site of AChE. Consequently, this class of compounds deserved to be thoroughly and systematically studied for the treatment of Alzheimer's disease.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/chemical synthesis , Drug Design , Flavonoids/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Binding Sites , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/therapeutic use , Flavonoids/chemical synthesis , Flavonoids/therapeutic use , Humans , Kinetics , Molecular Docking Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL