Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Front Plant Sci ; 15: 1370362, 2024.
Article in English | MEDLINE | ID: mdl-38576789

ABSTRACT

Introduction: The components of nighttime sap flux (En), which include transpiration (Qn) and stem water recharge (Rn), play important roles in water balance and drought adaptation in plant communities in water-limited regions. However, the quantitative and controlling factors of En components are unclear. Methods: This study used the heat balance method to measure sap flow density in Vitex negundo on the Loess Plateau for a normal precipitation year (2021) and a wetter year (2022). Results: The results showed that the mean values were 1.04 and 2.34 g h-1 cm-2 for Qn, 0.19 and 0.45 g h-1 cm-2 for Rn in 2021 and 2022, respectively, and both variables were greater in the wetter year. The mean contributions of Qn to En were 79.76% and 83.91% in 2021 and 2022, respectively, indicating that the En was mostly used for Qn. Although the vapor pressure deficit (VPD), air temperature (Ta) and soil water content (SWC) were significantly correlated with Qn and Rn on an hourly time scale, they explained a small fraction of the variance in Qn on a daily time scale. The main driving factor was SWC between 40-200 cm on a monthly time scale for the Qn and Rn variations. Rn was little affected by meteorological and SWC factors on a daily scale. During the diurnal course, Qn and Rn initially both declined after sundown because of decreasing VPD and Ta, and Qn was significantly greater than Rn, whereas the two variables increased when VPD was nearly zero and Ta decreased, and Rn was greater than Qn. Discussion: These results provided a new understanding of ecophysiological responses and adaptation of V. negundo plantations to increasing drought severity and duration under climate changes.

2.
Angew Chem Int Ed Engl ; : e202404454, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683297

ABSTRACT

Sustainable carbon dots comprising surficial oxime ester groups following homolytic bond cleavage exhibit potential as photoinitiators for traditional free radical photopolymerization. Carbon dots were made following a solvothermal procedure from sustainable furfural available from lignocellulose. Surficial aldehyde moieties reacted with hydroxylamine to the respective oxime while reaction with benzoyl chloride resulted in a biobased Type I photoinitiator comprising sustainable carbon dot (CD-PI). Photoinitiating ability was compared with the traditional photoinitiator (PI) ethyl (2,4,6-trimethyl benzoyl) phenyl phosphinate (TPO-L) by real-time FTIR with UV exposure at 365 nm. Photopolymer composition based on a mixture of urethane dimethacrylate (UDMA) and tripropylene glycol diethacrylate (TPGDA) resulted in a similar final conversion of about 70% using either CD-PI or TPO-L. Nevertheless, it appeared homogeneous in the case of compositions processed with CD-PI, while those made with TPO-L were heterogeneous as shown by two glass transition temperatures. Moreover, the migration rate of CD-PI in the cured samples was lower in comparison with those samples using TPO-L as PI.

3.
Plants (Basel) ; 13(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38256782

ABSTRACT

The agro-pastoral ecotone in northern China is the main production area of agriculture and animal husbandry, in which agricultural development relies entirely on groundwater. Due to the increasing water consumption of groundwater year by year, groundwater resources are becoming increasingly scarce. The substantial water demand and low germination rate in the first year are the main characteristics of alfalfa (Medicago sativa L.) yield in the agro-pastoral ecotone in northern China. Due to unscientific irrigation, water resources are seriously wasted, which restricts the development of local agriculture and animal husbandry. The study constructed the Dssat-Forages-Alfalfa model and used soil water content, leaf area index, and yield data collected with in situ observation experiments in 2022 and 2023 to calibrate and validate the parameters. The study found ARE < 10%, ENRMS < 15%, and R2 ≥ 0.85. The model simulation accuracy was acceptable. The study revealed that the water consumption at the surface soil layer (0-20 cm) was more than 6~12% and 13~31% than that at the 20-40 cm and 40-60 cm soil layers, respectively. The study showed when the irrigation quota was 30 mm, the annual yield of alfalfa (Medicago sativa L.) (7435 kg/ha) was consistent with that of the irrigation quota of 33 mm, and increased by 3.99% to 5.34% and 6.86% to 10.67% compared with that of irrigation quotas of 27 mm and 24 mm, respectively. To ensure the germination rate of alfalfa (Medicago sativa L.), it is recommended to control the initial soil water content at 0.8 θfc~1.0 θfc, with an irrigation quota of 30 mm, which was the best scheme for water-use efficiency and economic yield. The study aimed to provide technological support for the rational utilization of groundwater and the scientific improvement of alfalfa yield in the agro-pastoral ecotone in northern China.

4.
Placenta ; 147: 1-11, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38277999

ABSTRACT

INTRODUCTION: Preeclampsia (PE) is a pregnancy complication that encompasses various pathogenic mechanisms. Shallow implantation of the placenta due to abnormal trophoblast behavior is considered an important mechanism underlying PE; however, its exact etiology remains unclear. METHODS: The expression of OLFML3 in the placenta and important clinical indicators were performed, followed by a correlation analysis. The effect of OLFML3 on the behavior of HTR-8/SVneo cells was examined, and the downstream molecular mechanisms of OLFML3 were investigated in HTR-8/SVneo cells. Additionally, a rat model of PE was generated by adenovirus injection via the tail vein to verify the role of OLFML3. RESULTS: OLFML3 is highly expressed in both syncytiotrophoblasts and cytotrophoblasts and deregulated in preeclamptic placentas. OLFML3 overexpression in HTR-8/SVneo cells promoted cell proliferation, migration, invasion, and impeded apoptosis, and triggered phosphorylation on ser473 of AKT. Conversely, OLFML3 knockdown exerted opposite effects. Furthermore, OLFML3 overexpression ameliorates CoCl2-induced apoptosis of HTR-8/SVneo cells. In a rat model, OLFML3 overexpression alleviates PE-associated maternal symptoms, leading to lower blood pressure, less severe proteinuria, improved fetal growth restriction, as well as upregulation of P-AKT and downregulation of Cleaved caspase3 and Bax. DISCUSSION: OLFML3 may alleviate PE development by inhibiting extravillous trophoblast cell apoptosis through the PI3K/AKT pathway. Our findings indicated that OLFML3 may provide a possible therapeutic target for PE.


Subject(s)
Glycoproteins , Intercellular Signaling Peptides and Proteins , Pre-Eclampsia , Proto-Oncogene Proteins c-akt , Animals , Female , Humans , Pregnancy , Rats , Apoptosis , Cell Movement , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Trophoblasts/metabolism
5.
Angew Chem Int Ed Engl ; 63(2): e202314997, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38009835

ABSTRACT

While still rare, cationic ligands offer much promise as tunable electron-withdrawing ligands for π-acid catalysis. Recently, we introduced pincer-type sulfonium cations into the list of available strongly π-acidic ancillary ligands. However, the M-S bond in sulfonium complexes of these ligands was found highly labile, precluding their catalytic applications. Herein we demonstrate that this obstacle can be overcome by increasing the rigidity of the sulfonium pincer scaffold. X-ray analyses confirm that despite bearing a formal positive charge, the sulfur atom of this newly designed sulfonium ligand maintains its coordination to the Pt(II)-center, while DFT calculations indicate that by doing so it strongly enhances the electrophilic character of the metal. Kinetic studies carried out on three model cycloisomerization reactions prove that such a tris-cationic sulfonium-Pt(II) complex is highly reactive, compared to its thioether-based analogue. This proof-of-concept study presents the first example of employing sulfonium-based ligands in homogeneous catalysis.

6.
Sci Total Environ ; 912: 169367, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104824

ABSTRACT

Integrated source analysis and risk assessment of metals facilitate the development of targeted risk management strategies. However, previous studies usually addressed total concentration rather than bioavailability, and consequently overestimated metal risk, especially natural source-related risk. In this study, a source-specific risk assessment was conducted by integrating the source analysis of bioavailable metals in surface sediments. Moreover, risk assessment was performed using two bioavailability-based indices: the total availability risk index (TARI) and a modified index of mean probable effect concentration quotients (mPEC-Q). A representative river watershed in eastern China was selected as the study area. Findings revealed that the total concentrations of Pb, Cu, Zn, Cr, and Ni in the sediments were 1.4-2.2 times higher than the local soil background values. Using a modified community bureau of reference (BCR) sequential extraction procedure, the dominant fraction for Pb, Cu, Zn, and Cr in the studied area was found to be the residual fraction, constituting 53.63-62.44% of the total concentrations. This suggested that a significant portion of the metals potentially originated from natural sources. Nevertheless, the concentration enrichment ratio (CER) indicated that anthropogenic sources contributed significantly, accounting for 67.84-87.68% of bioavailable metals. The positive matrix factorization (PMF) model further identified three different sources of bioavailable metals, with a descending concentration contribution sequence of industrial sources (37.61%), mixed traffic and natural sources (33.17%), and agricultural sources (29.22%). Both the TARI and mPEC-Q index values indicated that the bioavailable metals generally posed a moderate risk, and Ni was the priority pollutant. Industrial sources contributed the most to the total risk, although the contribution from TARI-based assessment (37.27%) was lower than that from the mPEC-Q assessment (46.43%). This study provides an example of the consideration of metal bioavailability in the context of source-specific risk assessments to develop more reasonable management strategies.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Environmental Monitoring , Rivers , Lead/analysis , Risk Assessment , China , Water Pollutants, Chemical/analysis , Geologic Sediments/analysis , Cadmium/analysis
7.
BMC Cancer ; 23(1): 1230, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097995

ABSTRACT

BACKGROUND: This study aimed to investigate the differences in the clinicopathological characteristics of younger and older patients with endometrial cancer (EC) and develop a nomogram to assess the prognosis of early onset EC in terms of overall survival. METHODS: Patients diagnosed with EC from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 were selected. Clinicopathological characteristics were compared between younger and older patients, and survival analysis was performed for both groups. Prognostic factors affecting overall survival in young patients with EC were identified using Cox regression. A nomogram was created and internal validation was performed using the consistency index, decision curve analysis, receiver operating characteristic curves, and calibration curves. External validation used data from 70 patients with early onset EC. Finally, Kaplan-Meier curves were plotted to compare survival outcomes across the risk subgroups. RESULTS: A total of 1042 young patients and 12,991 older patients were included in this study. Younger patients were divided into training (732) and validation (310) cohorts in a 7:3 ratio. Cox regression analysis identified age, tumorsize, grade, FIGO stage(International Federation of Gynecology and Obstetrics) and surgery as independent risk factors for overall survival, and a nomogram was constructed based on these factors. Internal and external validations demonstrated the good predictive power of the nomogram. In particular, the C-index for the overall survival nomogram was 0.832 [95% confidence interval (0.797-0.844)] in the training cohort and 0.839 (0.810-0.868) in the internal validation cohort. The differences in the Kaplan-Meier curves between the different risk subgroups were statistically significant. CONCLUSIONS: In this study, a nomogram for predicting overall survival of patients with early onset endometrial cancer based on the SEER database was developed to help assess the prognosis of patients and guide clinical treatment.


Subject(s)
Endometrial Neoplasms , Nomograms , Female , Pregnancy , Humans , Endometrial Neoplasms/therapy , Calibration , Databases, Factual , Patients , Prognosis
8.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2693-2702, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37897276

ABSTRACT

Clarifying the effect of different maize straw returning methods on soil temperature is crucial for optimizing the management of farmland straw and the efficient utilization of heat resources in the black soil region of Northeast China. To investigate the impacts of straw returning methods on soil temperature, we conducted a field experiment with four treatments during 2018 and 2020, including plough tillage with straw returning (PTSR), rotary tillage with straw returning (RTSR), no-tillage with straw returning (NTSR), and a control treatment of conventional ridge tillage without straw returning (CT). We measured soil temperature and water content at the 5 cm, 15 cm and 30 cm soil layer, and the straw coverage rate during the 3-year maize growth period. We further analyzed the differences of soil temperature in different soil layer under different treatments, accumulated soil temperature and growing degree-days (GDD) above 10 ℃, daily dynamics of soil temperature, the production efficiency of air accumulated temperature among different treatments, and explored factors causing the difference of soil temperature and the production efficiency of air accumulated temperature. Our results showed that different treatments mainly affected soil temperature from the sowing to emergence stage (S-VE) of maize. The daily average soil temperature showed a trend of CT>PTSR>RTSR>NTSR. The differences of soil temperature under different treatments showed a decreasing trend as growth process advanced and soil depth increased. Compared with the CT treatment, soil temperature at 5 cm depth was decreased by 0.86, 1.84 and 3.50 ℃ for PTSR, RTSR, and NTSR treatments, respectively. NTSR significantly reduced the accumulated temperature of ≥10 ℃ in different soil layers and GDD. The accumulated temperature ≥ 10 ℃ at the 5, 15, and 30 cm soil layers decreased by 216.2, 222.7, and 165.1 ℃·d, and the GDD decreased by 201.9, 138.7 and 123.9 ℃·d, respectively. In addition, production efficiency of air accumulated temperature decreased by 9.7% to 15.6% for NTSR. Conclusively, PTSR and RTSR had significant impacts on topsoil temperature during the maize growing period from sowing to emergence, but did not affect the accumulated soil temperature and the production efficiency of air accumulated temperature. However, NTSR significantly reduced topsoil temperature and production efficiency of air accumulated temperature.


Subject(s)
Agriculture , Soil , Agriculture/methods , Zea mays , Temperature , Triticum , China
9.
Toxics ; 11(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37888675

ABSTRACT

An economical and effective method is still lacking for cadmium (Cd) toxicity reduction and food product safety improvement in soil-vegetable systems. Therefore, this study aimed to reduce the Cd toxicity to pak choi (Brassica campestris L.) by jointly using passivators and organic fertilizer, highlighting food products' safety based on pot experiments. The results showed that compared with the control, organic fertilizer decreased the Cd content in edible parts and the soil's available Cd by 48.4% and 20.9% on average, respectively, due to the 0.15-unit increases in soil pH. Once jointly applied with passivators, the decrements increased by 52.3-72.6% and 32.5-52.6% for the Cd content in edible parts and for the soil's available Cd, respectively, while the pH increment increased by 0.15-0.46 units. Compared with the control, the transport factor of Cd was reduced by 61.9% and 50.9-55.0% when applying organic fertilizer alone and together with the passivators, respectively. The combination treatment of biochar and organic fertilizer performed the best in decreasing the Cd content in the edible parts and the soil's available Cd. The combination treatment of fish bone meal and organic fertilizer induced the greatest increases in soil pH. The grey relational analysis results showed that the combination treatment of biochar and organic fertilizer performed the best in reducing the potential Cd pollution risk, thereby highlighting the vegetable food safety. This study provides a potential economical and effective technology for toxicity reduction and food safety in Cd-polluted soil.

10.
Gels ; 9(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37754383

ABSTRACT

Hard carbon materials are considered to be the most practical anode materials for sodium ion batteries because of the rich availability of their resources and potentially low cost. Here, the conversion of corn leaf biomass, a largely available agricultural waste, into carbonaceous materials for Na-ion storage application is reported. Thermal analysis investigation determines the presence of exothermic events occurring during the thermal treatment of the biomass. Accordingly, various temperatures of 400, 500, and 600 °C are selected to perform carbonization treatment trials, leading to the formation of various biocarbons. The materials obtained are characterized by a combination of methods, including X-ray diffraction, electron microscopy, surface evaluation, Raman spectroscopy, and electrochemical characterizations. The Na-ion storage performances of these materials are investigated using water-soluble carboxymethyl cellulose binder, highlighting the influence of the carbonization temperature on the electrochemical performance of biocarbons. Moreover, the influence of post-mechanochemical treatment on the Na-ion storage performance of biocarbons is studied through kinetic evaluations. It is confirmed that reducing the particle sizes and increasing the carbon purity of biocarbons and the formation of gel polymeric networks would improve the Na-ion storage capacity, as well as the pseudocapacitive contribution to the total current. At a high-current density of 500 mA g-1, a specific Na-ion storage capacity of 134 mAh g-1 is recorded on the biocarbon prepared at 600 °C, followed by ball-milling and washing treatment, exhibiting a reduced charge transfer resistance of 49 Ω and an improved Na-ion diffusion coefficient of 4.8 × 10-19 cm2 s-1. This article proposes a simple and effective technique for the preparation of low-cost biocarbons to be used as the anode of Na-ion batteries.

11.
Chemosphere ; 343: 140281, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758083

ABSTRACT

Using asphalt mixture to solidify heavy metals in municipal solid waste incineration fly ash can reduce pollution and realize resource utilization. In this study, the physical and chemical properties of washed fly ash were analyzed, and washed fly ash was added to asphalt mixture as filler instead of mineral powder. The study involved analyzing the mechanical attributes of asphalt mixtures containing washed fly ash, along with examining the characteristics of asphalt binder that incorporates the washed fly ash. Subsequently, assess the potential leaching hazards associated with asphalt mixture incorporating washed fly ash. The test results showed that washed fly ash was a Si-Al-Ca system material, which had small particle size, large specific surface area and many pores. It increased the contact area with asphalt, which improved encapsulation of asphalt and aggregates. The optimal dosage of washed fly ash is 2.5%. At this dosage, the mixture attains optimal high-temperature performance, while both low-temperature performance and the characteristics of washed fly ash asphalt binder align with requirements. Asphalt mixture has solidification on heavy metals, with strongest solidification for Zn, followed by Cu, Cr. A prediction model of leaching amount versus time was constructed for Pb, Ba and Ni, which have weak solidified ability. The cumulative leaching amount of the road within 15 years of service life was calculated through the model, and it was obtained that the addition of washed fly ash will not cause pollution to environment. Overall, this study showed that asphalt mixtures can be used for stabilization/solidification of washed fly ash while saving natural mineral, providing a theoretical basis for the resource application of washed fly ash in asphalt road construction.


Subject(s)
Metals, Heavy , Refuse Disposal , Coal Ash/chemistry , Incineration , Solid Waste , Minerals , Metals, Heavy/analysis , Carbon , Particulate Matter
12.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1853-1861, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694469

ABSTRACT

We examined the effects of different tillage practices on plough layer soil structure and organic carbon stabilization in black soil farmland with a long-term positioning platform. The wet-sieving method and infrared spectroscopy method were used to investigate the impacts of conventional tillage (CT), no-tillage (NT), sub-soiling tillage (ST), and moldboard plowing tillage (MP) on soil aggregates distribution and organic carbon characteristics in 0-40 cm soil layers. Compared to CT, both NT and ST treatments significantly increased the proportion of large macroaggregates (>2 mm) in the topsoil layer (0-20 cm)and that of small macroaggregates (0.25-2 mm) in the subsoil layer (20-40 cm) for NT, ST, and MP. NT, ST, and MP treatments resulted in higher mean weight dia-meter (MWD) and mean geometric diameter (GMD) of soil aggregates in both the topsoil and subsoil layers. NT treatment improved organic carbon contents in bulk soil and large macroaggregates in the topsoil layer, while ST and MP enhanced organic carbon contents in bulk soil and large macroaggregates in the subsoil layer. The contribution rate of small macroaggregates organic carbon content to the total was between 68.9% and 83.4%. Furthermore, the organic carbon chemical stabilization of soil body and aggregates increased in the topsoil and subsoil layers under NT treatment compared to others. The MWD had a positive correlation with the organic carbon content and chemical stability of soil body and small macroaggregates. These findings offered a theoretical basis for understanding the impacts of different tillage practices on the stability of soil aggregate and organic carbon in black soil region.


Subject(s)
Carbon , Soil , Farms
13.
Front Plant Sci ; 14: 1237248, 2023.
Article in English | MEDLINE | ID: mdl-37636114

ABSTRACT

Introduction: Rainfall events can determine a cascade of plant physiological and ecological processes, and there is considerable interest in the way that rainfall modifies plant water flux dynamics. Methods: The sap flow density (SF) of the planted species of Vitex negundo and Hippophae rhamnoides, on the Loess Plateau of China was monitored using the heat balance method from 2015 to 2017. Results and discussion: The results showed that SF responded differently to rainfall classes because of the changing meteorological and soil water content (SWC) conditions. For class 1: 0.2-2 mm, SF increased by 14.36-42.93% for the two species, which were mainly attributable to the effect of solar radiation and vapor pressure deficit after rainfall. For class 2: 2-10 mm, SF remained nearly stable for V. negundo and decreased for H. rhamnoides because of the relative humidity's effect. For class 3: > 10 mm, SF increased significantly because of increased SWC and the increasing response to solar radiation. The increased percentage of SF was relatively higher for V. negundo when rainfall was less than 20 mm, while the value was higher for H. rhamnoides when rainfall was greater than 10 mm. Further, V. negundo's water potential increased at the soil-root interface (ψ0) and ψL, indicating that the plant, which has shallower roots and a coarser of leaf and bark texture, considered as anisohydric species and used precipitation-derived upper soil water to survive. The relatively consistent ψL and ψ0 for H. rhamnoides, which has deep roots and leathery leaves, indicated that this species was considered as isohydric species and insensitive to the slight change in the soil water status. The differed response patter and water use strategies between the two species showed that species as V. negundo are more susceptible to frequent, but small rainfall events, while larger, but less frequent rainfall events benefit such species as H. rhamnoides. This study quantified the effect of environmental factors for SF variation. The results could help formulate a selection process to determine which species are more suitable for sustainable management in the afforestation activities under the context of more frequent and intense rainfall events.

14.
J Cancer Res Clin Oncol ; 149(15): 13619-13629, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37515615

ABSTRACT

OBJECTIVE: Endometrial cancer (EC) is a common malignancy of the female reproductive system and although most patients have a good prognosis, 20-30% of patients with advanced disease have a poor prognosis. There are currently no reliable biomarkers for early diagnosis and effective prognostic improvement of the disease. The purpose of this study was to explore the correlation between different forms of folic acid and endometrial cancer. METHODS: This study included 8809 female subjects aged ≥ 20 years in the NHANES database from 2011 to 2018, including 8738 non-oncology patients and 71 EC patients. Selection bias was reduced using 1:1 propensity score matching (PSM) method. Restricted cubic spline (RCS) was plotted to explore the non-linear relationship between different forms of folic acid and EC. RESULT: Using data from the NHANES database from 2011 to 2018, the association between folic acid and the risk of developing EC was assessed. The results of the 1:1 ratio propensity score matching (PSM) showed 68 each for EC patients and non-oncology participants. Total serum folate, 5-methyltetrahydrofolate (5-methylTHF), 5-formyltetrahydrofolate (5-formylTHF), tetrahydrofolate (THF) and 5,10-methylenetetrahydrofolate (5,10-methenylTHF) were significantly correlated with EC (p < 0.05). In addition, the RCS showed a significant non-linear correlation between THF and 5,10-formyl THF and the risk of developing EC. CONCLUSION: The results of this study showed that changes in serum total folate, 5-methylTHF, 5-formylTHF, THF and 5,10-methenylTHF were related to EC.

15.
Sci Rep ; 13(1): 8332, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221287

ABSTRACT

The effects of different tillage management practices on the soil aggregates, soil carbon stock (STCS), and soil nitrogen stock (STNS) are key issues in agricultural research. We conducted an 8-year field experiment to evaluate the effects of different tillage methods: stubble cleaning and ridging (CK), no-tillage with stubble retention (NT), plow tillage (PT), and width lines (WL) on soil aggregates, STCS, and STNS in the black soil corn continuous cropping area of Northeast China. Different tillage methods predominantly affected the soil aggregates in the 2-0.25 mm and 0.25-0.053 mm size classes. The PT methods increased the proportion of macroaggregates and improved the quality of the soil aggregates. PT methods significantly increased the soil organic carbon content at the 0-30 cm layer by changing the number of soil macroaggregates. The PT practices are better strategies for enhancing soil carbon sinks, and the WL method increased the total amount of N in the soil pool. Our results suggest that the PT and WL methods are the best strategies for improving the quality of soil aggregates and preventing/reducing depletion of soil C and N in a black soil area of Northeast China.

16.
Sci Total Environ ; 876: 162558, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36894100

ABSTRACT

Soil moisture is an important variable of the environment that directly affects hydrological, ecological, and climatic processes. However, owing to the influence of soil type, soil structure, topography, vegetation, and human activities, the distribution of soil water content is spatially heterogeneous. It is difficult to accurately monitor the distribution of soil moisture over large areas. To investigate the direct or indirect influence of various factors on soil moisture and obtain accurate soil moisture inversion results, we used structural equation models (SEMs) to determine the structural relationships between these factors and the degree of their influence on soil moisture. These models were subsequently transformed into the topology of artificial neural networks (ANN). Finally, a structural equation model coupled with an artificial neural network was constructed (SEM-ANN) for soil moisture inversion. The results showed the following: (1) The most important predictor of the spatial variability of soil moisture in the April was the temperature-vegetation dryness index, while land surface temperature was the most important predictor in the August; (2) After the ANN model was improved, the inversion accuracy of surface soil moisture by SEM-ANN model was improved, and the R2 of verification set was increased by 0.01 and 0.02 in April and August, respectively, and the relative analysis error was reduced by 0.5 % and 1.13 %. (3) There were no significant differences in soil moisture distribution trends between the April and August.

18.
New Phytol ; 238(1): 155-168, 2023 04.
Article in English | MEDLINE | ID: mdl-36527238

ABSTRACT

In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pollen Tube , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ovule/metabolism , Pollen Tube/metabolism , Pollination/physiology , Seeds/metabolism
19.
J Environ Sci (China) ; 127: 60-68, 2023 May.
Article in English | MEDLINE | ID: mdl-36522089

ABSTRACT

With increasing concerns on the environment and human health, the degradation of glyphosate through the formation of less toxic intermediates is of great importance. Among the developed methods for the degradation of glyphosate, photodegradation is a clean and efficient strategy. In this work, we report a new photocatalyst by doping F ion on BiVO4 that can efficiently degrade glyphosate and reduce the toxic emissions of aminomethylphosphonic acid (AMPA) through the selective (P)-C-N cleavage in comparison of BiVO4 catalyst. The results demonstrate that the best suppression of AMPA formation was achieved by the catalyst of 0.3F@BiVO4 at pH = 9 (AMPA formation below 10%). In situ attenuated total reflectance Fourier transforms infrared (ATR-FTIR) spectroscopy indicates that the adsorption sites of glyphosate on BiVO4 and 0.3F@BiVO4 are altered due to the difference in electrostatic interactions. Such an absorption alteration leads to the preferential cleavage of the C-N bond on the N-C-P skeleton, thereby inhibiting the formation of toxic AMPA. These results improve our understanding of the photodegradation process of glyphosate catalyzed by BiVO4-based catalysts and pave a safe way for abiotic degradation of glyphosate.


Subject(s)
Fluorine , Glycine , Humans , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Photolysis , Glyphosate
20.
Biochem Genet ; 61(1): 138-150, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35761155

ABSTRACT

This study explored prognostic genes of ovarian cancer and built a prognostic model based on these genes to predict patient's survival, which is of great significance for improving treatment of ovarian cancer. GSE26712 dataset was downloaded from Gene Expression Omnibus database as training set, while OV-AU dataset was downloaded from ICGC website as validation set. All genes in GSE26712 were analyzed by univariate Cox regression, Lasso regression, and multivariate Cox regression analyses. Then prognosis-related feature genes were screened to construct a multivariate risk model. Meanwhile, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed on samples in the high/low-risk groups using Gene Set Enrichment Analysis (GSEA) software. Finally, survival curve and receiver operating characteristic curve were drawn to verify the validity of the model. Ten feature genes related to prognosis of ovarian cancer were obtained: CMTM6, COLGALT1, F2R, GPR39, IGFBP3, RNF121, MTMR9, ORAI2, SNAI2, ZBTB16. GSEA enrichment analysis showed that there were notable differences in biological pathways such as gap junctions and homologous recombination between the high/low-risk groups. Through further verification of training set and validation set, the 10-gene prognostic model was found to be effective for the prognosis of ovarian cancer patients. In this study, we constructed a 10-gene prognostic model which predicted the prognosis of ovarian cancer patients well by integrating clinical prognostic parameters. It may have certain reference value for subsequent clinical treatment research of ovarian cancer patients and help in clinical treatment decision-making.


Subject(s)
Ovarian Neoplasms , Transcriptome , Humans , Female , Prognosis , Ovarian Neoplasms/genetics , ROC Curve , Protein Tyrosine Phosphatases, Non-Receptor , Receptors, G-Protein-Coupled
SELECTION OF CITATIONS
SEARCH DETAIL
...