Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1157841, 2023.
Article in English | MEDLINE | ID: mdl-37534104

ABSTRACT

Introduction: Reliable biomarkers are in need to predict the prognosis of hepatocellular carcinoma (HCC). Whilst recent evidence has established the critical role of copper homeostasis in tumor growth and progression, no previous studies have dealt with the copper-related genes (CRGs) signature with prognostic potential in HCC. Methods: To develop and validate a CRGs prognostic signature for HCC, we retrospectively included 353 and 142 patients as the development and validation cohort, respectively. Copper-related Prognostic Signature (Copper-PSHC) was developed using differentially expressed CRGs with prognostic value. The hazard ratio (HR) and the area under the time-dependent receiver operating characteristic curve (AUC) during 3-year follow-up were utilized to evaluate the performance. Additionally, the Copper-PSHC was combined with age, sex, and cancer stage to construct a Copper-clinical-related Prognostic Signature (Copper-CPSHC), by multivariate Cox regression. We further explored the underlying mechanism of Copper-PSHC by analyzing the somatic mutation, functional enrichment, and tumor microenvironment. Potential drugs for the high-risk group were screened. Results: The Copper-PSHC was constructed with nine CRGs. Patients in the high-risk group demonstrated a significantly reduced overall survival (OS) (adjusted HR, 2.65 [95% CI, 1.83-3.84] and 3.30, [95% CI, 1.27-8.60] in the development and validation cohort, respectively). The Copper-PSHC achieved a 3-year AUC of 0.74 [95% CI, 0.67-0.82] and 0.71 [95% CI, 0.56-0.86] for OS in the development and validation cohort, respectively. Copper-CPSHC yield a 3-year AUC of 0.73 [95% CI, 0.66-0.80] and 0.72 [95% CI, 0.56-0.87] for OS in the development and validation cohort, respectively. Higher tumor mutation burden, downregulated metabolic processes, hypoxia status and infiltrated stroma cells were found for the high-risk group. Six small molecular drugs were screened for the treatment of the high-risk group. Conclusion: Copper-PSHC services as a promising tool to identify HCC with poor prognosis and to improve disease outcomes by providing potential clinical decision support in treatment.

2.
J Healthc Eng ; 2021: 8642576, 2021.
Article in English | MEDLINE | ID: mdl-34938424

ABSTRACT

Arrhythmia is a cardiovascular disease that seriously affects human health. The identification and diagnosis of arrhythmia is an effective means of preventing most heart diseases. In this paper, a BiLSTM-Treg algorithm that integrates rhythm information is proposed to realize the automatic classification of arrhythmia. Firstly, the discrete wavelet transform is used to denoise the ECG signal, based on which we performed heartbeat segmentation and preserved the timing relationship between heartbeats. Then, different heartbeat segment lengths and the BiLSTM network model are used to conduct multiple experiments to select the optimal heartbeat segment length. Finally, the tree regularization method is used to optimize the BiLSTM network model to improve classification accuracy. And the interpretability of the neural network model is analyzed by analyzing the simulated decision tree generated in the tree regularization method. This method divides the heartbeat into five categories (nonectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fused heartbeats (F), and unknown heartbeats (Q)) and is validated on the MIT-BIH arrhythmia database. The results show that the overall classification accuracy of the algorithm is 99.32%. Compared with other methods of classifying heartbeat, the BiLSTM-Treg network model algorithm proposed in this paper not only improves the classification accuracy and obtains higher sensitivity and positive predictive value but also has higher interpretability.


Subject(s)
T-Lymphocytes, Regulatory , Ventricular Premature Complexes , Algorithms , Electrocardiography , Heart Rate , Humans , Signal Processing, Computer-Assisted
3.
J Healthc Eng ; 2021: 4123471, 2021.
Article in English | MEDLINE | ID: mdl-34676061

ABSTRACT

Myocardial infarction (MI) is one of the most common cardiovascular diseases threatening human life. In order to accurately distinguish myocardial infarction and have a good interpretability, the classification method that combines rule features and ventricular activity features is proposed in this paper. Specifically, according to the clinical diagnosis rule and the pathological changes of myocardial infarction on the electrocardiogram, the local information extracted from the Q wave, ST segment, and T wave is computed as the rule feature. All samples of the QT segment are extracted as ventricular activity features. Then, in order to reduce the computational complexity of the ventricular activity features, the effects of Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Locality Preserving Projections (LPP) on the extracted ventricular activity features are compared. Combining rule features and ventricular activity features, all the 12 leads features are fused as the ultimate feature vector. Finally, eXtreme Gradient Boosting (XGBoost) is used to identify myocardial infarction, and the overall accuracy rate of 99.86% is obtained on the Physikalisch-Technische Bundesanstalt (PTB) database. This method has a good medical diagnosis basis while improving the accuracy, which is very important for clinical decision-making.


Subject(s)
Algorithms , Myocardial Infarction , Electrocardiography , Humans , Myocardial Infarction/diagnosis , Principal Component Analysis , Wavelet Analysis
4.
J Healthc Eng ; 2021: 9913127, 2021.
Article in English | MEDLINE | ID: mdl-34336169

ABSTRACT

Arrhythmia is a common cardiovascular disease that can threaten human life. In order to assist doctors in accurately diagnosing arrhythmia, an intelligent heartbeat classification system based on the selected optimal feature sets and AdaBoost + Random Forest model is developed. This system can acquire ECG signals through the Holter and transmit them to the cloud platform for preprocessing and feature extraction, and the features are input into AdaBoost + Random Forest for heartbeat classification. The analysis results are output in the form of reports. In this system, by comparing and analyzing the classification accuracy of different feature sets and classifiers, the optimal classification algorithm is obtained and applied to the system. The algorithm accuracy of the system is tested based on the MIT-BIH data set. The result shows that AdaBoost + Random Forest achieved 99.11% accuracy with optimal feature sets. The intelligent heartbeat classification system based on this algorithm has also achieved good results on clinical data.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Heart Rate , Humans
5.
J Healthc Eng ; 2021: 6630643, 2021.
Article in English | MEDLINE | ID: mdl-34055274

ABSTRACT

Automatic classification of ECG is very important for early prevention and auxiliary diagnosis of cardiovascular disease patients. In recent years, many studies based on ECG have achieved good results, most of which are based on single-label problems; one record corresponds to one label. However, in actual clinical applications, an ECG record may contain multiple diseases at the same time. Therefore, it is very important to study the multilabel ECG classification. In this paper, a multiscale residual deep neural network CSA-MResNet model based on the channel spatial attention mechanism is proposed. Firstly, the residual network is integrated into a multiscale manner to obtain the characteristics of ECG data at different scales and then increase the channel spatial attention mechanism to better focus on more important channels and more important ECG data fragments. Finally, the model is used to classify multilabel in large databases. The experimental results on the multilabel CCDD show that the CSA-MResNet model has an average F1 score of 88.2% when the multilabel classification of 9 ECGs is performed. Compared with the benchmark model, the F1 score of CSA-MResNet in the multilabel ECG classification increased by up to 1.7%. And, in the model verification on another database HF-challenge, the final average F1 score is 85.8%. Compared with the state-of-the-art methods, CSA-MResNet can help cardiologists perform early-stage rapid screening of ECG and has a certain generalization performance, providing a feasible analysis method for multilabel ECG classification.


Subject(s)
Algorithms , Cardiovascular Diseases , Disease Progression , Electrocardiography , Humans , Neural Networks, Computer
6.
J Healthc Eng ; 2021: 8811837, 2021.
Article in English | MEDLINE | ID: mdl-33575022

ABSTRACT

Arrhythmia is one of the most common abnormal symptoms that can threaten human life. In order to distinguish arrhythmia more accurately, the classification strategy of the multifeature combination and Stacking-DWKNN algorithm is proposed in this paper. The method consists of four modules. In the preprocessing module, the signal is denoised and segmented. Then, multiple different features are extracted based on single heartbeat morphology, P length, QRS length, T length, PR interval, ST segment, QT interval, RR interval, R amplitude, and T amplitude. Subsequently, the features are combined and normalized, and the effect of different feature combinations on heartbeat classification is analyzed to select the optimal feature combination. Finally, the four types of normal and abnormal heartbeats were identified using the Stacking-DWKNN algorithm. This method is performed on the MIT-BIH arrhythmia database. The result shows a sensitivity of 89.42% and a positive predictive value of 94.90% of S-type beats and a sensitivity of 97.21% and a positive predictive value of 97.07% of V-type beats. The obtained average accuracy is 99.01%. Compared to other models with the same features, this method can improve accuracy and has a higher positive predictive value and sensitivity, which is important for clinical decision-making.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Heart Rate , Humans
7.
J Healthc Eng ; 2019: 5787582, 2019.
Article in English | MEDLINE | ID: mdl-31687121

ABSTRACT

Premature ventricular contraction (PVC) is one of the most common arrhythmias in the clinic. Due to its variability and susceptibility, patients may be at risk at any time. The rapid and accurate classification of PVC is of great significance for the treatment of diseases. Aiming at this problem, this paper proposes a method based on the combination of features and random forest to identify PVC. The RR intervals (pre_RR and post_RR), R amplitude, and QRS area are chosen as the features because they are able to identify PVC better. The experiment was validated on the MIT-BIH arrhythmia database and achieved good results. Compared with other methods, the accuracy of this method has been significantly improved.


Subject(s)
Electrocardiography , Machine Learning , Signal Processing, Computer-Assisted , Ventricular Premature Complexes/diagnosis , Algorithms , Databases, Factual , Decision Trees , Humans
SELECTION OF CITATIONS
SEARCH DETAIL