Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(13): 3575-3590, 2023 07.
Article in English | MEDLINE | ID: mdl-37021594

ABSTRACT

Enhancing soil organic carbon (SOC) sequestration and food supply are vital for human survival when facing climate change. Site-specific best management practices (BMPs) are being promoted for adoption globally as solutions. However, how SOC and crop yield are related to each other in responding to BMPs remains unknown. Here, path analysis based on meta-analysis and machine learning was conducted to identify the effects and potential mechanisms of how the relationship between SOC and crop yield responds to site-specific BMPs in China. The results showed that BMPs could significantly enhance SOC and maintain or increase crop yield. The maximum benefits in SOC (30.6%) and crop yield (79.8%) occurred in mineral fertilizer combined with organic inputs (MOF). Specifically, the optimal SOC and crop yield would be achieved when the areas were arid, soil pH was ≥7.3, initial SOC content was ≤10 g kg-1 , duration was >10 years, and the nitrogen (N) input level was 100-200 kg ha-1 . Further analysis revealed that the original SOC level and crop yield change showed an inverted V-shaped structure. The association between the changes in SOC and crop yield might be linked to the positive role of the nutrient-mediated effect. The results generally suggested that improving the SOC can strongly support better crop performance. Limitations in increasing crop yield still exist due to low original SOC level, and in regions where the excessive N inputs, inappropriate tillage or organic input is inadequate and could be diminished by optimizing BMPs in harmony with site-specific conditions.


Subject(s)
Agriculture , Soil , Humans , Soil/chemistry , Agriculture/methods , Carbon/analysis , Carbon Sequestration , China , Crops, Agricultural
2.
J Environ Manage ; 329: 117065, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36566726

ABSTRACT

Recommended management practices (RMPs, e.g., manuring, no-tillage, crop residue return) can increase soil organic carbon (SOC), reduce greenhouse gas emissions, and maintain soil health in croplands. However, there is no consensus on how RMPs affect the SOC storage potential of cropland soils for climate change mitigation. Here, based on 2301 comparisons from 158 peer-reviewed papers, a meta-analysis was conducted to explore management-induced SOC stock changes and their variations under different conditions. The results show that SOC stocks in the 0-20 cm layer were increased by 31.8% when chemical fertilization combined with manure application was compared with no fertilizer; 9.98% when no-tillage was compared with plow tillage; and 10.84% when straw return was compared with removal. The RMPs favorably increased SOC stock in arid areas, and in alkaline and fine-textured soils. Initial SOC, carbon-nitrogen ratio, and experimental duration could also affect SOC storage. Compared with the initial SOC stock, RMPs increased the SOC sequestration potential by 2.6-4.5% in the 0-20 cm soil depth, indicating that these practices can help China achieve targets to increase SOC by 4.0‰. Hence, it is essential to implement RMPs for climate change mitigation and soil fertility improvement.


Subject(s)
Agriculture , Soil , Soil/chemistry , Agriculture/methods , Carbon/analysis , Crops, Agricultural , China , Carbon Sequestration , Manure/analysis
3.
Sci Total Environ ; 847: 157518, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35878862

ABSTRACT

Conservation agriculture (CA) has been adopted worldwide on about 200 Mha to enhance soil organic carbon (SOC) for mitigating climate change. However, as a crucial mechanism to sequester SOC, how the protection of aggregates responds to the interaction between no-till and crop rotations (two principles of CA) remains unknown. Thus, a field experiment with six treatments [e.g., no-till or rotary tillage under the maize-wheat-soybean-wheat system (NT-MWSW, RT-MWSW), no-till or rotary tillage under the maize-wheat system (NT-MW, RT-MW), and no-till or rotary tillage under the soybean-wheat system (NT-SW, RT-SW)] was conducted from June 2018 to June 2021 in the North China Plain (NCP) to assess their effects on aggregation and SOC. Results indicated that macroaggregates (> 0.25 mm) were the main contributors to the soil carbon (C) pool, comprised 64.7-87.3 % of aggregates, and encompassed 64.9-73.1 % of the SOC stock. NT increased not only the proportion of macroaggregates but also aggregate stability (i.e., mean weight diameter and geometric mean diameter). Significant positive effects from legumes were observed under NT. SW increased by 13.6 % macroaggregate-associated SOC under NT in 0-20 cm compared to that under MW. Additionally, the conversion rate of straw C input under NT-SW was higher than that in other treatments, augmenting it by 9.4-21.9 %. This may be attributed to the higher macroaggregate total nitrogen (increased by 1.7-15.9 %) in 0-10 cm under legume-based crop rotations compared to that under MW, resulting in lower C: N ratios, which promoted the decomposition of straw. Furthermore, the total potential mineralization of macroaggregates under NT legume-based crop rotations was 3.0-16.0 % higher than that of MW. Thus, a legume-based NT system can significantly improve soil macro-aggregation, increase the conversion rate of straw C input, and reduce C loss, which can be a viable practice to enhance SOC sequestration capacity under CA in the NCP.


Subject(s)
Fabaceae , Soil , Agriculture/methods , Carbon/analysis , Carbon Sequestration , China , Crop Production , Nitrogen , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...