Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Clinics (Sao Paulo) ; 69(1): 15-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24473555

ABSTRACT

OBJECTIVE: This study aimed to identify novel PITX2c mutations responsible for idiopathic atrial fibrillation. METHODS: A cohort of 210 unrelated patients with idiopathic atrial fibrillation and 200 unrelated, ethnically matched healthy individuals used as controls were recruited. The whole coding exons and splice junctions of the PITX2c gene, which encodes a paired-like homeobox transcription factor required for normal cardiovascular morphogenesis, were sequenced in 210 patients and 200 control subjects. The causative potentials of the identified mutations were automatically predicted by MutationTaster and PolyPhen-2. The functional characteristics of the PITX2c mutations were explored using a dual-luciferase reporter assay system. RESULTS: Two novel heterozygous PITX2c mutations (p.Q105L and p.R122C) were identified in 2 of the 210 unrelated patients with idiopathic atrial fibrillation. These missense mutations were absent in the 400 control chromosomes and were both predicted to be pathogenic. Multiple alignments of PITX2c protein sequences across various species showed that the altered amino acids were highly evolutionarily conserved. A functional analysis demonstrated that the mutant PITX2c proteins were both associated with significantly reduced transcriptional activity compared with their wild-type counterparts. CONCLUSION: The findings of this study associate PITX2c loss-of-function mutations with atrial fibrillation, supporting the hypothesis that dysfunctional PITX2c confers enhanced susceptibility to atrial fibrillation and suggesting potential implications for early prophylaxis and allele-specific therapy for this common arrhythmia.


Subject(s)
Atrial Fibrillation/genetics , Homeodomain Proteins/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Aged , Amino Acid Sequence , Case-Control Studies , Cohort Studies , Female , Genetic Predisposition to Disease , Genetic Testing , Humans , Luciferases, Renilla/genetics , Male , Middle Aged , Risk Factors , Sequence Alignment , Transcription, Genetic
2.
Clinics ; Clinics;69(1): 15-22, 1/2014. tab, graf
Article in English | LILACS | ID: lil-697717

ABSTRACT

OBJECTIVE: This study aimed to identify novel PITX2c mutations responsible for idiopathic atrial fibrillation. METHODS: A cohort of 210 unrelated patients with idiopathic atrial fibrillation and 200 unrelated, ethnically matched healthy individuals used as controls were recruited. The whole coding exons and splice junctions of the PITX2c gene, which encodes a paired-like homeobox transcription factor required for normal cardiovascular morphogenesis, were sequenced in 210 patients and 200 control subjects. The causative potentials of the identified mutations were automatically predicted by MutationTaster and PolyPhen-2. The functional characteristics of the PITX2c mutations were explored using a dual-luciferase reporter assay system. RESULTS: Two novel heterozygous PITX2c mutations (p.Q105L and p.R122C) were identified in 2 of the 210 unrelated patients with idiopathic atrial fibrillation. These missense mutations were absent in the 400 control chromosomes and were both predicted to be pathogenic. Multiple alignments of PITX2c protein sequences across various species showed that the altered amino acids were highly evolutionarily conserved. A functional analysis demonstrated that the mutant PITX2c proteins were both associated with significantly reduced transcriptional activity compared with their wild-type counterparts. CONCLUSION: The findings of this study associate PITX2c loss-of-function mutations with atrial fibrillation, supporting the hypothesis that dysfunctional PITX2c confers enhanced susceptibility to atrial fibrillation and suggesting potential implications for early prophylaxis and allele-specific therapy for this common arrhythmia. .


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Atrial Fibrillation/genetics , Homeodomain Proteins/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Amino Acid Sequence , Case-Control Studies , Cohort Studies , Genetic Predisposition to Disease , Genetic Testing , Luciferases, Renilla/genetics , Risk Factors , Sequence Alignment , Transcription, Genetic
3.
Clinics (Sao Paulo) ; 68(6): 777-84, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23778487

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the prevalence and spectrum of Nkx2.5 mutations associated with idiopathic atrial fibrillation (AF). METHODS: A cohort of 136 unrelated patients with idiopathic atrial fibrillation and 200 unrelated, ethnically matched healthy controls were enrolled. The coding exons and splice junctions of the Nkx2.5 gene were sequenced in 136 atrial fibrillation patients, and the available relatives of mutation carriers and 200 controls were subsequently genotyped for the identified mutations. The functional characteristics of the mutated Nkx2.5 gene were analyzed using a dual-luciferase reporter assay system. RESULTS: Two novel heterozygous Nkx2.5 mutations (p.N19D and p.F186S) were identified in 2 of the 136 unrelated atrial fibrillation cases, with a mutational prevalence of approximately 1.47%. These missense mutations co-segregated with atrial fibrillation in the families and were absent in the 400 control chromosomes. Notably, 2 mutation carriers also had congenital atrial septal defects and atrioventricular block. Multiple alignments of the Nkx2.5 protein sequences across various species revealed that the altered amino acids were completely conserved evolutionarily. Functional analysis demonstrated that the mutant Nkx2.5 proteins were associated with significantly reduced transcriptional activity compared to their wild-type counterpart. CONCLUSION: These findings associate the Nkx2.5 loss-of-function mutation with atrial fibrillation and atrioventricular block and provide novel insights into the molecular mechanism involved in the pathogenesis of atrial fibrillation. These results also have potential implications for early prophylaxis and allele-specific therapy of this common arrhythmia.


Subject(s)
Atrial Fibrillation/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Transcription Factors/genetics , Adult , Age Factors , Aged , Amino Acid Sequence , Case-Control Studies , Family , Female , Genes, Reporter , Genetic Predisposition to Disease , Homeobox Protein Nkx-2.5 , Humans , Luciferases/genetics , Male , Middle Aged , Mutation, Missense/genetics , Sequence Alignment , Young Adult
4.
Clinics ; Clinics;68(6): 777-784, jun. 2013. tab, graf
Article in English | LILACS | ID: lil-676941

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the prevalence and spectrum of Nkx2.5 mutations associated with idiopathic atrial fibrillation (AF). METHODS: A cohort of 136 unrelated patients with idiopathic atrial fibrillation and 200 unrelated, ethnically matched healthy controls were enrolled. The coding exons and splice junctions of the Nkx2.5 gene were sequenced in 136 atrial fibrillation patients, and the available relatives of mutation carriers and 200 controls were subsequently genotyped for the identified mutations. The functional characteristics of the mutated Nkx2.5 gene were analyzed using a dual-luciferase reporter assay system. RESULTS: Two novel heterozygous Nkx2.5 mutations (p.N19D and p.F186S) were identified in 2 of the 136 unrelated atrial fibrillation cases, with a mutational prevalence of approximately 1.47%. These missense mutations co-segregated with atrial fibrillation in the families and were absent in the 400 control chromosomes. Notably, 2 mutation carriers also had congenital atrial septal defects and atrioventricular block. Multiple alignments of the Nkx2.5 protein sequences across various species revealed that the altered amino acids were completely conserved evolutionarily. Functional analysis demonstrated that the mutant Nkx2.5 proteins were associated with significantly reduced transcriptional activity compared to their wild-type counterpart. CONCLUSION: These findings associate the Nkx2.5 loss-of-function mutation with atrial fibrillation and atrioventricular block and provide novel insights into the molecular mechanism involved in the pathogenesis of atrial fibrillation. These results also have potential implications for early prophylaxis and allele-specific therapy of this common arrhythmia. .


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Atrial Fibrillation/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Transcription Factors/genetics , Age Factors , Amino Acid Sequence , Case-Control Studies , Family , Genes, Reporter , Genetic Predisposition to Disease , Luciferases/genetics , Mutation, Missense/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL