Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Plant Physiol Biochem ; 212: 108784, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823093

ABSTRACT

TGA-binding (TGA) transcription factors, characterized by the basic region/leucine zipper motif (bZIP), have been recognized as pivotal regulators in plant growth, development, and stress responses through their binding to the as-1 element. In this study, the TGA gene families in melon, watermelon, cucumber, pumpkin, and zucchini were comprehensively characterized, encompassing analyses of gene/protein structures, phylogenetic relationships, gene duplication events, and cis-acting elements in gene promoters. Upon transient expression in Nicotiana benthamiana, the melon CmTGAs, with typical bZIP and DOG1 domains, were observed to localize within the nucleus. Biochemical investigation revealed specific interactions between CmTGA2/3/5/8/9 and CmNPR3 or CmNPR4. The CmTGA genes exhibited differential expression patterns in melon plants in response to different hormones like salicylic acid, methyl jasmonate, and ethylene, as well as a fungal pathogen, Stagonosporopsis cucurbitacearum that causes gummy stem blight in melon. The overexpression of CmTGA3, CmTGA8, and CmTGA9 in Arabidopsis plants resulted in the upregulation of AtPR1 and AtPR5 expression, thereby imparting enhanced resistance to Pseudomonas syringae pv. Tomato DC3000. In contrast, the overexpression of CmTGA7 or CmTGA9 resulted in a compromised resistance to Botrytis cinerea, coinciding with a concomitant reduction in the expression levels of AtPDF1.2 and AtMYC2 following infection with B. cinerea. These findings shed light on the important roles of specific CmTGA genes in plant immunity, suggesting that genetic manipulation of these genes could be a promising avenue for enhancing plant immune responses.

2.
Food Chem ; 455: 139881, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823136

ABSTRACT

Consumer partiality for food products is related to purchase and consumption behavior, and are influenced by sensory preferences. The sensory and chemical drivers behind consumer preference in the infant formula (IF) were analyzed. A total of 31 aroma-active compounds were identified, playing an important role in the production of off-flavors (especially fishy). Combined with the correlation analysis, the key aroma substances affecting the sensory attributes of IF were initially identified. A21, A22, B9 represented the key substances responsible for producing milky and creamy, while A2, A5, A11, A12, B5, C15, H5 primarily produced fishy. In addition, the two sensory attributes namely milky and creamy, and the T-sweet were more strongly correlated with consumer preference. Therefore, it can be concluded that consumers are more interested in the main flavor of the product than the off-flavor. These findings will inform the quality control of IF and the maintenance of sensory quality.

3.
Talanta ; 276: 126244, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754185

ABSTRACT

The detections of H2O2 and catalase play an important role in daily life. This study introduces a paper-based flow sensor that is specifically designed to detect H2O2 and catalase. The sensor utilizes a hydrogel composed of cross-linked 4-carboxyphenylboronic acid and polyvinyl alcohol. When H2O2 is in contact with the hydrogel, the B-C bonds of the hydrogel undergo a reactive process, causing decomposition of the hydrogel. The pH indicator strip enables the visual monitoring of the viscosity change that occurs during the gel-sol transition. The quantification of H2O2 is accomplished by assessing the proportion of water coverage on the pH indicator strip. The sensor shows a detection limit of 0.077 wt% and is applicable for the quantitative measurement of H2O2 in routinely used disinfectants. Furthermore, the presence of catalase is effectively identified and the detection of catalase in milk is successfully fulfilled. In summary, this work proposes a simple, user-friendly, label-free, and cost-effective method for constructing a paper-based flow sensor using borate cross-linked polyvinyl alcohol hydrogel, showing great potential for detecting H2O2 and catalase in various practical scenarios.

4.
Neurochem Int ; 177: 105766, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750961

ABSTRACT

Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not clear the role of LHb 5-HT1B receptors in regulation of anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to decreased normalized δ power and increased normalized θ power in the LHb, and decreased dopamine (DA) level in the prelimbic cortex (PrL) compared with sham rats. Down-regulation of LHb 5-HT1B receptors by RNA interference produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb in both sham and lesioned rats. Further, intra-LHb injection of 5-HT1B receptor agonist CP93129 induced anxiolytic-like responses, increased normalized δ power and decreased normalized θ power in the LHb, and increased DA and serotonin (5-HT) release in the PrL; conversely, 5-HT1B receptor antagonist SB216641 produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb, and decreased DA and 5-HT release in the PrL in sham and lesioned rats. Additionally, effects of CP93129 and SB216641 on the behaviors, normalized δ and θ power in the LHb, and DA and 5-HT release in the PrL were decreased in lesioned rats, which were consistent with down-regulation of LHb 5-HT1B receptors after DA depletion. Collectively, these findings suggest that 5-HT1B receptors in the LHb are involved in the regulation of anxiety-like behaviors.


Subject(s)
Anxiety , Habenula , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1B , Animals , Habenula/metabolism , Habenula/drug effects , Receptor, Serotonin, 5-HT1B/metabolism , Male , Anxiety/metabolism , Anxiety/psychology , Rats , Oxidopamine/toxicity , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/psychology , Dopamine/metabolism , Behavior, Animal/physiology , Behavior, Animal/drug effects
5.
Environ Int ; 187: 108627, 2024 May.
Article in English | MEDLINE | ID: mdl-38636273

ABSTRACT

BACKGROUND: Despite increased literature focusing on the role of the built environment (BE) in health, few cohort studies have quantitatively analyzed neighborhood walkability environment in relation to the risk of death and cardiovascular disease (CVD). This longitudinal study aimed at evaluating the association between perceived BE attributeswith mortality and major CVD based on the Prospective Urban Rural Epidemiology study in China (PURE-China). METHODS: The PURE-China study recruited 47,931 participants aged 35-70 years from 12 provinces of China between 2005 and 2009. The perceived BE information, including land use, street, aesthetics, and safety, was collected using the neighborhood environment walkability scale (NEWS) questionnaire, with higher scores indicating a more favorable rating. Two primary outcomes are all-cause mortality and major CVD event. The Cox frailty model with random intercepts was used to assess the association between the perceived total BE/subscales score and outcomes. RESULTS: Of 32,163 participants included in this study, 19,253 (59.9 %) were women, and the mean (SD) age was 51.0 (9.5) years. After a median follow-up period of 11.7 years (IQR 9.4 - 12.2), we observed that one standard deviation higher of combined BE scores was related to a lower risk of all-cause mortality (HR = 0.85; 95 %CI, 0.80-0.90), and major CVD events (HR = 0.95; 95 %CI, 0.90-0.99). The subscales of perceived BE were related to a lower risk, although a few were not significant. Land use mix-diversity and safety from crime were the two most significant subscales. Stronger risks were observed among urban and female participants. CONCLUSION: Favorable perceived BE characteristics were linked with a lower risk of all-cause mortality and major CVD events in Chinese population, especially in urban areas and females. Our findings can be used by policymakers to take action to mitigate the adverse effect of poor community conditions on health, such as improving local amenities and transport connectivity, providing building paths for walking, running and cycling.


Subject(s)
Built Environment , Cardiovascular Diseases , Humans , Cardiovascular Diseases/mortality , Cardiovascular Diseases/epidemiology , Middle Aged , Female , China/epidemiology , Male , Adult , Prospective Studies , Aged , Built Environment/statistics & numerical data , Surveys and Questionnaires , Rural Population/statistics & numerical data , Longitudinal Studies , Residence Characteristics/statistics & numerical data , Walking
6.
Molecules ; 29(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542828

ABSTRACT

The dynamic adsorption characteristics of K2CO3-promoted layered double hydroxides (LDHs)-based adsorbent, with organic and inorganic anion intercalation, were studied. MgAl-LDH, K2CO3/MgAl-LDH, and K2CO3/MgAl-LDH(C16) with varying K2CO3 loads were prepared and used for intermediate-temperature CO2 sequestration. The adsorbent was thoroughly characterized using X-ray diffraction, Brunauer-Emmett-Teller, scanning electron microscopy, and Fourier Transform Infrared Spectroscopy techniques, which revealed enhanced adsorption properties of MgAl-LDH, due to K2CO3 promotion. Thermogravimetric CO2 adsorption tests on the constructed adsorbent materials showed that the 12.5 wt% K2CO3/MgAl-LDH(C16) adsorbent with organic anion intercalation exhibited optimal adsorption activity, achieving an adsorption capacity of 1.12 mmol/g at 100% CO2 and 350 °C. However, fixed-bed dynamic adsorption tests yielded different results; the 25 wt% K2CO3/MgAl-LDH prepared through inorganic anion intercalation exhibited the best adsorption performance in low-concentration CO2 penetration tests. The recorded penetration time was 93.1 s, accompanied by an adsorption capacity of 0.722 mmol/g. This can be attributed to the faster adsorption kinetics exhibited by the 25 wt% K2CO3/MgAl-LDH adsorbent during the early stages of adsorption, thereby facilitating efficient CO2 capture in low-concentration CO2 streams. This is a conclusion that differs from previous reports. Earlier reports indicated that LDHs with organic anion intercalation exhibited higher CO2 adsorption activity in thermogravimetric analyzer tests. However, this study found that for the fixed-bed dynamic adsorption process, K2CO3-modified inorganic anion-intercalated LDHs perform better, indicating their greater potential in practical applications.

7.
Neurochem Int ; 175: 105720, 2024 May.
Article in English | MEDLINE | ID: mdl-38458538

ABSTRACT

The anteroventral bed nucleus of stria terminalis (avBNST) is a key brain region which involves negative emotional states, such as anxiety. The most neurons in the avBNST are GABAergic, and it sends GABAergic projections to the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN), respectively. The VTA and DRN contain dopaminergic and serotonergic cell groups in the midbrain which regulate anxiety-like behaviors. However, it is unclear the role of GABAergic projections from the avBNST to the VTA and the DRN in the regulation of anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and decreased level of dopamine (DA) in the basolateral amygdala (BLA). Chemogenetic activation of avBNSTGABA-VTA or avBNSTGABA-DRN pathway induced anxiety-like behaviors and decreased DA or 5-HT release in the BLA in sham and 6-OHDA rats, while inhibition of avBNSTGABA-VTA or avBNSTGABA-DRN pathway produced anxiolytic-like effects and increased level of DA or 5-HT in the BLA. These findings suggest that avBNST inhibitory projections directly regulate dopaminergic neurons in the VTA and serotonergic neurons in the DRN, and the avBNSTGABA-VTA and avBNSTGABA-DRN pathways respectively exert impacts on PD-related anxiety-like behaviors.


Subject(s)
Anti-Anxiety Agents , Parkinson Disease , Septal Nuclei , Rats , Animals , Dorsal Raphe Nucleus/metabolism , Ventral Tegmental Area/metabolism , Serotonin/metabolism , Septal Nuclei/metabolism , Oxidopamine/toxicity , Anxiety , Parkinson Disease/metabolism , Dopamine/metabolism , Anti-Anxiety Agents/pharmacology , Dopaminergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism
8.
Curr Res Food Sci ; 8: 100693, 2024.
Article in English | MEDLINE | ID: mdl-38356611

ABSTRACT

The odor of infant formula changes due to alterations in its volatile composition during the shelf life. However, there is currently a lack of research on whether the odor changes in infant formula during the secondary shelf life, which refers to the period of repeated opening and usage in daily life. This study used headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-electrostatic orbitrap high-resolution mass spectrometry (GC-Orbitrap-MS) to investigate the volatile composition changes in one-stage and three-stage infant formulas during different stages (0 day, 3 days, and 7 days during the secondary shelf-life, i.e. simulated daily use). A total of 32 volatiles were identified, including nine aldehydes, seven ketones, four alcohols, three furans, two sulfur compounds, two esters, and five terpenoids. Of these, 16 compounds changed significantly in one-stage samples and 23 compounds in three-stage samples within 7 days of the secondary shelf-life. Further the odor of the three-stage infant formula samples was found changed substantially after 3 days of simulated use by using the triangle test. This study highlighted the considerable alterations in volatile compound composition and sensory changes during the simulated daily use and provided valuable insights for consumers in selecting and using infant formula products, as well as a new perspective for enterprises to improve the sensory quality of their products.

9.
Chemistry ; 30(19): e202304066, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38289154

ABSTRACT

The immune regulation of the lymphatic system, especially the lymph node (LN), is of great significance for the treatment of diseases and the inhibition of pathogenic organisms spreading in the body. However, achieving precise spatiotemporal control of immune cell activation in LN in vivo remains a challenge due to tissue depth and off-target effects. Furthermore, minimally invasive and real-time feedback methods to monitor the regulation of the immune system in LN are lacking. Here, focused ultrasound responsive immunomodulator loaded nanoplatform (FURIN) with near-infrared II (NIR-II) luminescence is designed to achieve spatiotemporally controllable immune activation in LN in vivo. The NIR-II persistent luminescence of FURIN can track its delivery in LN through bioimaging. Under focused ultrasound (FUS) stimulation, the immunomodulator encapsulated in FURIN can be released locally in the LN to activate immune cells such as dendritic cells and the NIR-II mechanoluminescence of FURIN provides real-time optical feedback signals for immune activation. This work points to a FUS mediated, spatiotemporal selective immune activation strategy in vivo with the feedback control of luminescence signals via ultrasound responsive nanocomposite, which is of great significance in improving the efficacy and reducing the side effect of immune regulation for the development of potential immunotherapeutic methods in the future.


Subject(s)
Furin , Lymph Nodes , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymph Nodes/surgery , Luminescence , Adjuvants, Immunologic
10.
Appl Microbiol Biotechnol ; 108(1): 70, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38194137

ABSTRACT

Welan gum, a natural polysaccharide produced by Sphingomonas sp. ATCC 31555, has attracted considerable attention in the scientific community due to its desirable properties. However, challenges, such as high viscosity, residual bacterial cells, carotenoids, and protein complexation, hinder the widespread application of welan gum. In this study, we established a method for the extraction and purification of welan gum using a synergistic approach with lysozyme and alkaline protease. Lysozyme hydrolysis conditions were optimized by applying response surface methodology, and the best results for bacterial cell removal were achieved at 11 000 U/g, 44 °C, and pH 9 after 3 h of treatment. Subsequently, we evaluated protein hydrolysis through computer simulation and identified alkaline protease as the most suitable enzyme. Through experimental investigations, we found that the optimal conditions for alkaline protease hydrolysis were 7500 U/g, 50 °C, pH 10, and 600 rpm. These conditions resulted in a sugar recovery rate of 76.1%, carotenoid removal rate of 89.5%, bacterial removal rate of 95.2%, and protein removal rate of 87.3% after 3 h of hydrolysis. The purified welan gum exhibited high transparency and purity. Structural characterization and antioxidant activity evaluation revealed that enzymatically purified welan gum has potential application prospects. Our study provides valuable insights into the optimal method for the enzymatic extraction and purification of welan gum. Such a method is conducive to the development of the multiple potential applications of welan gum. KEY POINTS: • A novel process for the synergistic purification of welan gum using lysozyme and alkaline protease was established. • In silico virtual digestion was employed to select the purification enzyme. • Welan gum with high transparency and purity was obtained.


Subject(s)
Bacterial Proteins , Muramidase , Computer Simulation , Carotenoids
11.
Small ; : e2307848, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054768

ABSTRACT

Reconfiguration of zinc anodes efficiently mitigates dendrite formation and undesirable side reactions, thus favoring the long-term cycling performance of aqueous zinc ion batteries (AZIBs). This study synthesizes a Zn@Bi alloy anode (Zn@Bi) using the fusion method, and find that the anode surfaces synthesized using this method have an extremely high percentage of Zn(002) crystalline surfaces. Experimental results indicate that the addition of bismuth inhibits the hydrogen evolution reaction and corrosion of zinc anodes. The finite-element simulation results indicate that Zn@Bi can effectively achieve a uniform anodic electric field, thereby regulating the homogeneous depositions of zinc ions and reducing the production of Zn dendrite. Theoretical calculations reveal that the incorporation of Bi favors the anode structure stabilization and higher adsorption energy of Zn@Bi corresponds to better Zn deposition kinetics. The Zn@Bi//Zn@Bi symmetric cell demonstrates an extended cycle life of 1000 h. Furthermore, when pairing Zn@Bi with an α-MnO2 cathode to construct a Zn@Bi//MnO2 cell, a specific capacity of 119.3 mAh g-1 is maintained even after 1700 cycles at 1.2 A g-1 . This study sheds light on the development of dendrite-free anodes for advanced AZIBs.

12.
Curr Res Food Sci ; 7: 100645, 2023.
Article in English | MEDLINE | ID: mdl-38077467

ABSTRACT

This study combined gas chromatography-mass spectrometry (GC-MS) and odor activity value (OAV) assessments to analyze the volatile ingredient changes in formula powder during 11 months of storage at room temperature. Orthogonal partial least squares-discriminant analysis (OPLS-DA) and variable importance in projection (VIP) were also used to assess the potential indicators of aroma changes during storage. The aim was to expose the possible changes in the aroma profile and the substances that alter infant formula (IF) aroma during storage. The results showed that the aldehyde and ketone content in the milk formula increased as the storage time was extended, while the lactone and terpenoid levels decreased significantly. The OAV indicated the presence of various major aromatic substances at different storage times. Considering consumer concern regarding product flavor, this study ascertained that monitoring substance changes during storage showed that 2-heptanone was a good indicator of milk flavor, dimethyl disulfide was a suitable indicator of protein degradation, and 3-methylbutanal, heptanal, hexanal, pentanal, and octanal were all good indicators of fat oxidation. The results of previous related studies were used to supplement the data in this work regarding the changes in IF during product shelf life and to provide support for controlling the flavor substances and quality during new product development.

13.
China CDC Wkly ; 5(51): 1150-1154, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38152634

ABSTRACT

Introduction: Published global and country-specific deaths associated with population aging are based on decomposition methods that have significant limitations. Methods: A new decomposition method was developed and its performance was compared with two frequently used methods. The new method was employed to calculate global deaths associated with population aging between 1990 and 2019, using estimates from the Global Burden of Disease Study 2019 (GBD 2019). Results: Compared to the two frequently-used existing methods, the new decomposition method generated results that are more consistent with logical expectations. Using the new method, the number of global deaths associated with population aging between 1990 and 2019 was 23.3 million. Upper middle-income countries accounted for 43% of global deaths related to population aging. The most deaths associated with population aging occurred from three types of disease: ischemic heart disease (5.0 million), stroke (3.8 million), and chronic obstructive pulmonary disease (2.2 million). China, India, Japan, the United States of America, and Brazil had the largest number of deaths related to population aging. Loss related to population aging was completely or partially counteracted by the reduction in mortality in 195 of the 200 countries and territories experiencing population aging (97.5%). Conclusions: The new decomposition method achieves more justifiable results associated with population aging than existing methods. Globally, population aging was associated with a substantial increase of deaths between 1990 and 2019, but it was totally or partially offset by the reduction in mortality in 97.5% of countries and territories.

14.
Pestic Biochem Physiol ; 196: 105623, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945232

ABSTRACT

Dendrobium officinale Kimura et Migo is a traditional Chinese herbal medicinal plant. However, the frequent occurrence of soft rot disease (SRD) is one of the most harmful diseases in D. officinale production in recent years, which can seriously affect its yield and quality. In this study, the major pathogenic fungus (SR-1) was isolated from D. officinale with typical symptoms of SRD, and was identified as Fusarium oxysporum through morphological and molecular identification. The biological activities of five natural products were determined against F. oxysporum using a mycelial growth inhibition assay. The results showed that osthole had the highest antifungal activity against F. oxysporum, with an EC50 value of 6.40 mg/L. Scanning electron microscopy (SEM) showed that osthole caused F. oxysporum mycelia to shrink and deform. Transmission electron microscopy (TEM) showed that the organelles were blurred and the cell wall was thickened in the presence of osthole. The sensitivity of F. oxysporum to calcofluor white (CFW) staining was significantly enhanced by osthole. Relative conductivity measurements and propidium iodide (PI) observation revealed that osthole had no significant effect on the cell membrane. Further experiments showed that the activity of chitinase and ß-1,3-glucanase were decreased, and expression levels of chitinase and ß-1,3-glucanase related genes were significantly down-regulated after treatment with osthole. In conclusion, osthole disrupted the cell wall integrity and dynamic balance of F. oxysporum, thereby inhibiting normal mycelial growth.


Subject(s)
Biological Products , Chitinases , Fusarium , Biological Products/pharmacology , Cell Wall , Chitinases/metabolism
16.
Bull World Health Organ ; 101(10): 637-648, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37772197

ABSTRACT

Objective: To evaluate the precision and dependability of road traffic mortality data recorded in the World Health Organization Mortality Database and investigate how uncorrected data influence vital mortality statistics used in traffic safety programmes worldwide. Methods: We assessed country and territory-specific data quality from 2015 to 2020 by calculating the proportions of five types of nonspecific cause of death codes related to road traffic mortality. We compared age-adjusted road traffic mortality and changes in the average annual mortality rate before and after correcting the deaths with nonspecific codes. We generated road traffic mortality projections with both corrected and uncorrected codes, and redistributed the data using the proportionate method. Findings: We analysed data from 124 countries and territories with at least one year of mortality data from 2015 to 2020. The number of countries and territories reporting more than 20% of deaths with ill-defined or unknown cause was 2; countries reporting injury deaths with undetermined intent was 3; countries reporting unspecified unintentional injury deaths was 21; countries reporting unspecified transport crash deaths was 3; and countries reporting unspecified unintentional road traffic deaths was 30. After redistributing deaths with nonspecific codes, road traffic mortality changed by greater than 50% in 7% (5/73) to 18% (9/51) of countries and territories. Conclusion: Nonspecific codes led to inaccurate mortality estimates in many countries. We recommend that injury researchers and policy-makers acknowledge the potential pitfalls of relying on raw or uncorrected road traffic mortality data and instead use corrected data to ensure more accurate estimates when improving road traffic safety programmes.


Subject(s)
Vital Statistics , Wounds and Injuries , Humans , Accidents, Traffic , Databases, Factual , World Health Organization , Records
17.
Med Oncol ; 40(9): 266, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37566135

ABSTRACT

6-methoxydihydrosanguinarine (6-MS), a natural benzophenanthridine alkaloid extracted from Macleaya cordata (Willd.) R. Br, has shown to trigger apoptotic cell death in cancer cells. However, the exact mechanisms involved have not yet been clarified. The current study reveals the underlying mechanisms of 6-MS-induced cytotoxicity in hepatocellular carcinoma (HCC) cells and investigates whether 6-MS sensitizes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. 6-MS was shown to suppress cell proliferation and trigger cell cycle arrest, DNA damage, and apoptosis in HCC cells. Mechanisms analysis indicated that 6-MS promoted reactive oxygen species (ROS) generation, JNK activation, and inhibits EGFR/Akt signaling pathway. DNA damage and apoptosis induced by 6-MS were reversed following N-acetyl-l-cysteine (NAC) treatment. The enhancement of PARP cleavage caused by 6-MS was abrogated by pretreatment with JNK inhibitor SP600125. Furthermore, 6-MS enhanced TRAIL-mediated HCC cells apoptosis by upregulating the cell surface receptor DR5 expression. Pretreatment with NAC attenuated 6-MS-upregulated DR5 protein expression and alleviated cotreatment-induced viability reduction, cleavage of caspase-8, caspase-9, and PARP. Overall, our results suggest that 6-MS exerts cytotoxicity by modulating ROS generation, EGFR/Akt signaling, and JNK activation in HCC cells. 6-MS potentiates TRAIL-induced apoptosis through upregulation of DR5 via ROS generation. The combination of 6-MS with TRAIL may be a promising strategy and warrants further investigation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Benzophenanthridines/pharmacology , Benzophenanthridines/therapeutic use , Liver Neoplasms/pathology , Up-Regulation , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Apoptosis , ErbB Receptors/genetics
18.
Molecules ; 28(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630208

ABSTRACT

As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Medicine, Chinese Traditional , Humans , Biological Availability , Drug Delivery Systems , Nanoparticle Drug Delivery System
19.
Neuropharmacology ; 237: 109645, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37392819

ABSTRACT

The anteroventral bed nucleus of the stria terminalis (avBNST) is widely acknowledged as a key brain structure that regulates negative emotional states, such as anxiety. At present, it is still unclear whether GABAA receptor-mediated inhibitory transmission in the avBNST is involved in Parkinson's disease (PD)-related anxiety. In this study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, increased GABA synthesis and release, and upregulated expression of GABAA receptor subunits in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). In both sham and 6-OHDA rats, intra-avBNST injection of GABAA receptor agonist muscimol induced the following changes: (i) anxiolytic-like responses, (ii) inhibition of the firing activity of GABAergic neurons in the avBNST, (iii) excitation of dopaminergic neurons in the ventral tegmental area (VTA) and serotonergic neurons in the dorsal raphe nucleus (DRN), and (iv) increase of DA and 5-HT release in the BLA, whereas antagonist bicuculline induced the opposite effects. Collectively, these findings suggest that degeneration of the nigrostriatal pathway enhances GABAA receptor-mediated inhibitory transmission in the avBNST, which is involved in PD-related anxiety. Further, activation and blockade of avBNST GABAA receptors affect the firing activity of VTA dopaminergic and DRN serotonergic neurons, and then change release of BLA DA and 5-HT, thereby regulating anxiety-like behaviors.


Subject(s)
Parkinson Disease , Septal Nuclei , Rats , Animals , Receptors, GABA-A/metabolism , Septal Nuclei/metabolism , Serotonin/metabolism , Oxidopamine/pharmacology , Rats, Sprague-Dawley , Anxiety , Substantia Nigra/metabolism , Dopamine/metabolism , Dorsal Raphe Nucleus/metabolism , gamma-Aminobutyric Acid
20.
Behav Brain Res ; 449: 114488, 2023 07 09.
Article in English | MEDLINE | ID: mdl-37169129

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is commonly accompanied with anxiety, multiple studies indicate that the basolateral amygdaloid nucleus (BLA) is closely related to modulation of anxiety and expresses serotonin1B (5-HT1B) receptors, however, effects of BLA 5-HT1B receptors on anxiety-like behaviors are unclear, particularly in PD-related anxiety. METHODS: The open-field and elevated plus maze tests were used to examine anxiety-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of BLA neurons and GABA, glutamate, dopamine (DA) and 5-HT release in the BLA, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, adenylate cyclase (AC) and phosphorylated protein kinase A at threonine 197 site (p-PKA-Thr197) in the BLA. RESULTS: Intra-BLA injection of 5-HT1B receptor agonist CP93129 produced anxiety-like effects and antagonist SB216641 induced anxiolytic-like responses in sham-operated and 6-hydroxydopamine-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129, respectively. Intra-BLA injection of CP93129 increased the firing rate of BLA glutamate neurons and decreased GABA/glutamate ratio and DA and 5-HT levels in the BLA of sham-operated and the lesioned rats, while SB216641 induced the opposite effects. Compared with sham-operated rats, effects of CP93129 and SB216641 on behaviors, electrophysiology and microdialysis were decreased in the lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the BLA. CONCLUSION: These findings suggest that 5-HT1B receptor-AC-PKA signal pathway in the BLA is involved in the regulation of PD-related anxiety.


Subject(s)
Basolateral Nuclear Complex , Parkinson Disease , Rats , Animals , Parkinson Disease/complications , Serotonin/metabolism , Basolateral Nuclear Complex/metabolism , Adenylyl Cyclases/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Rats, Sprague-Dawley , Anxiety , Dopamine/metabolism , gamma-Aminobutyric Acid , Glutamates
SELECTION OF CITATIONS
SEARCH DETAIL
...