Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Fish Shellfish Immunol ; 149: 109595, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38692381

ABSTRACT

This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-ß was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.

2.
GigaByte ; 2024: gigabyte111, 2024.
Article in English | MEDLINE | ID: mdl-38434930

ABSTRACT

The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.

3.
Fish Shellfish Immunol ; 146: 109385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242262

ABSTRACT

The Toll pathway is crucial for innate immune responses in organisms (including Drosophila and mammals). The Spätzle protein outside of cells acts as a ligand for Toll receptors, enabling the transfer of signals from outside the cell to the inside. However, the function of Spätzle in the immune system of mud crab (Scylla paramamosain) remains unclear. This research discovered a novel Spätzle gene (Sp-Spz) in mud crab, which showed extensive expression in all the tissues that were examined. The RNA interference exhibited the correlation between Sp-Spz and the anti-lipopolysaccharide factors (ALFs). Knockdown of Sp-Spz decreased the expression of Sp-Toll2 but not Sp-Toll1. In Drosophila Schneider 2 cells, Sp-Spz was found interacted with Sp-Toll2. Moreover, the depletion of Sp-Spz caused the separation of hepatic lobules from the basement membrane, resulting in the disruption of the structural coherence of hepatopancreatic cells. Additionally, the knockdown of Sp-Spz resulted in changes to the composition of the hemolymph microbiota, specifically affecting the proportions of different phylum and family levels. The findings indicated that Sp-Spz may promote the synthesis of ALFs via Sp-Toll2, thereby influencing the homeostasis of microbiota in the hemolymph. In this study, novel insights into mud crab immunity are provided.


Subject(s)
Brachyura , Microbiota , Animals , Hemolymph , Arthropod Proteins , Homeostasis , Drosophila/metabolism , Immunity, Innate/genetics , Mammals/metabolism
5.
J Biol Chem ; 299(12): 105463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977221

ABSTRACT

Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.


Subject(s)
Bacteria , Crustacea , Exosomes , Ferroptosis , Iron , Cytochrome P-450 Enzyme System/metabolism , Exosomes/metabolism , Ferroptosis/physiology , Iron/metabolism , Lipid Peroxidation , Peroxisome Proliferator-Activated Receptors/metabolism , Oxidoreductases/metabolism , Membrane Proteins/metabolism , CD36 Antigens/metabolism , RNA-Seq , Ferrous Compounds/metabolism , Crustacea/cytology , Crustacea/genetics , Crustacea/metabolism , Crustacea/microbiology , Hydroxyeicosatetraenoic Acids , Arachidonic Acid/metabolism , Fatty Acids/metabolism , Bacteria/metabolism
6.
Nat Genet ; 55(11): 1976-1986, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37932434

ABSTRACT

Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.


Subject(s)
Allium , Allium/genetics , Plant Breeding , Onions/genetics , Genome , Chromosomes
7.
Fish Shellfish Immunol ; 142: 109158, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832749

ABSTRACT

Potassium channel modulatory factor 1 (KCMF1), an E3 ubiquitin ligase, plays a vital role in renal tubulogenesis, preeclampsia, and tumor development in mammals. Nevertheless, the function of KCMF1 in invertebrates remains to be investigated. Here, we identified KCMF1-like from Scylla paramamosian, encoding 242 amino acids with two zinc finger domains at the N-terminal. Real-time quantitative PCR analysis revealed that KCMF1-like was expressed in all tested tissues, including hemocytes, brain, mid-intestine, subcuticular epidermis, gills, muscle, heart, and stomach, with higher levels in muscle and mid-intestine. KCMF1-like was up-regulated in the hemocytes of mud crabs challenged with white spot syndrome virus (WSSV). RNA interference (RNAi) was performed to investigate the impact of KCMF1-like on the proliferation of WSSV in mud crabs. Knock-down of KCMF1-like resulted in an increase of the WSSV copy number and an impairment of the hemocytes apoptosis rate in vivo. In addition, KCMF1-like could also affect the mitochondrial membrane potential. Collectively, these results revealed that KCMF1-like might play a crucial role in the defense against virus infection in mud crab. This study contributes a novel insight into the role of KCMF1-like in the antiviral immune defense mechanism in crustaceans.


Subject(s)
Brachyura , White spot syndrome virus 1 , Animals , Immunity, Innate/genetics , White spot syndrome virus 1/physiology , Arthropod Proteins , Apoptosis , Hemocytes , Mammals/metabolism
8.
Fish Shellfish Immunol ; 142: 109139, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37821002

ABSTRACT

Postbiotics have the ability to improve host metabolic disorders and immunity. In order to explore whether the postbiotics SWFC (cultured supernatant mixture of Cetobacterium somerae and Lactococcus lactis) repaired the adverse effects caused by feeding of high-fat diet (HFD), zebrafish were selected as the experimental animal and fed for 6 weeks, with dietary HFD as the control group, and HFD containing 0.3 g/kg and 0.4 g/kg SWFC as the treatment groups. The results indicated that addition of SWFC in the diet at a level of 0.3 and 0.4 g/kg didn't affect the growth performance of zebrafish (P > 0.05). Supplementation of dietary SWFC0.3 relieved lipid metabolism disorders through significant increasing in the expression of pparα and cpt1, and decreasing the expression of cebpα, pparγ, acc1 and dgat-2 genes (P < 0.05). Moreover, the content of triacylglycerol was markedly lower in the liver of zebrafish grouped under SWFC0.3 (P < 0.05). Dietary SWFC0.3 also improved the antioxidant capacity via increasing the expression level of ho-1, sod and gstr genes, and significant inducing malondialdehyde content in the liver of zebrafish (P < 0.05). Besides, dietary SWFC0.3 also notably improved the expression level of lysozyme, c3a, defbl1 and defbl2 (P < 0.05). The expression level of pro-inflammatory factors (nf-κb, tnf-α, and il-1ß) were significantly decreased and the expression level of anti-inflammatory factor (il-10) was markedly increased in the postbiotics 0.3 g/kg group (P < 0.05). Feeding with SWFC0.3 supplemented diet for 6 weeks improved the homeostasis of gut microbiota and increased the survival rate of zebrafish after challenged with Aeromonus veronii Hm091 (P < 0.01). It was worth noting that the positive effect of dietary SWFC at a level of 0.3 g/kg was considerably better than that of 0.4 g/kg. This may imply that the effectiveness and use of postbiotics is limited by dosage.


Subject(s)
Gastrointestinal Microbiome , Lactococcus lactis , Animals , Diet, High-Fat/adverse effects , Zebrafish , Liver/metabolism
9.
Front Immunol ; 14: 1246181, 2023.
Article in English | MEDLINE | ID: mdl-37711612

ABSTRACT

Shrimp aquaculture has been seriously affected by acute hepatopancreatic necrosis disease (AHPND), caused by a strain of Vibrio parahaemolyticus that carries the Pir toxin plasmids (V. parahaemolyticus (AHPND)). In this study, the transcription factor, Kruppel homolog 1-like of Peneaus vannamei (PvKr-h1), was significantly induced in shrimp hemocytes after V. parahaemolyticus (AHPND) challenge, suggesting that PvKr-h1 is involved in shrimp immune response. Knockdown of PvKr-h1 followed by V. parahaemolyticus (AHPND) challenge increased bacterial abundance in shrimp hemolymph coupled with high shrimp mortality. Moreover, transcriptome and immunofluorescence analyses revealed that PvKr-h1 silencing followed by V. parahaemolyticus (AHPND) challenge dysregulated the expression of several antioxidant-related enzyme genes, such as Cu-Zu SOD, GPX, and GST, and antimicrobial peptide genes, i.e., CRUs and PENs, and reduced ROS activity and nuclear translocation of Relish. These data reveal that PvKr-h1 regulates shrimps' immune response to V. parahaemolyticus (AHPND) infection by suppressing antioxidant-related enzymes, enhancing ROS production and promoting nuclei import of PvRelish to stimulate antimicrobial peptide genes expression.


Subject(s)
Vibrio parahaemolyticus , Animals , Antioxidants , Hemocytes , Reactive Oxygen Species , Crustacea , Acute Disease , Antimicrobial Peptides , Necrosis
10.
Fish Shellfish Immunol ; 141: 109059, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37678479

ABSTRACT

High stocking density has been regarded as an adverse factor in bivalve aquaculture. However, its subsequent molecular response to pathogenic bacteria has been little studied. In order to study the question, a novel MyD88 was first cloned using adult noble scallops Chlamys nobilis (CnMyD88), and its tissue distribution was investigated. Then, 1860 juvenile scallops were divided into two groups with two initial densities of high density (200 individuals/layer, HD) and normal density (110 individuals/layer, ND) and in-situ cultured for three months, in which their growth, survival, and the differential expression of CnMyD88 were examined, respectively. Finally, scallops were injected with the Vibrio parahaemolyticus to assess the temporal expression of CnMyD88. As the results show, CnMyD88 cDNA has a full length of 2241 bp and contains an 1107 bp ORF that encodes a 368-derived protein. It was widely expressed in examined tissues with a significantly higher level in hemolymph, intestine, mantle, and gonad than others. Besides, the HD group showed lower growth (0.39 ± 0.05 mm/day) and survival (37.00 ± 8.49%) than the ND group (0.55 ± 0.02 mm/day and 76.82 ± 5.78%). More importantly, the HD group exhibited significantly lower expression levels of CnMyD88 in their examined tissues than the ND group. After V. parahaemolyticus challenging, CnMyD88 had significantly lower expression levels in the scallops from the HD group than that of the scallops from the ND group at 6th, 24th, and 36th. The present results indicated that high stocking density not only made adverse impacts on growth and survival but also may induce immunosuppression in the noble scallop. Therefore, appropriate low stocking density may be worth considering to adopt in scallop aquaculture.


Subject(s)
Pectinidae , Vibrio parahaemolyticus , Humans , Animals , Vibrio parahaemolyticus/physiology , Myeloid Differentiation Factor 88/metabolism , Pectinidae/microbiology , DNA, Complementary/genetics , Aquaculture
11.
Food Res Int ; 172: 113213, 2023 10.
Article in English | MEDLINE | ID: mdl-37689958

ABSTRACT

Yellow oil mud crab (YOC) is a new variant of mud crab (Scylla paramamosain), which was attracted much attention in recent years due to its high level of nutrition. However, the nutritive values and the physiological changes in YOC have not been clearly understood. In this study, we aimed to identify the nutrient compositions (including total carotenoid content (TCC), total lipid content (TLC), total antioxidant capacity (TAC), and fatty acids) and differences in genes related to the biosynthesis of fatty acids using transcriptome analysis in YOC in comparison with those of normal mud crabs. As a result, observations on the morphological characteristics showed that the YOC exhibits a difference in the color of the muscle, gills (orange-yellow), and hemolymph (yellow) compared with the normal female crabs (NFC) (blue or nattier blue). The TCC and TLC (84.96 ± 9.65 µg/g in muscle and 1.39 ± 0.10 µg/mL in hemolymph) or TAC (1.52 ± 0.17 mM in hemolymph) of YOC were higher than that of NFC and normal male crab (NMC). YOC had lower saturated fatty acids, but higher unsaturated fatty acids, as well as the ratio of n-3/n-6 of fatty acids in muscle and hemolymph, compared with those of NFC and NMC. Furthermore, the transcriptome profile revealed that the unigenes in YOC were enriched in the synthesis of n-3 fatty acids. Furthermore, more unigenes related to 'Biosynthesis of unsaturated fatty acids' were identified in muscle and hemocytes, while fewer were in the gonads of YOC. Additionally, the positive (in muscle and hemocytes) and a negative correlation (in gonads) between expressions of unigenes and contents of TLC, TCC, and UFA were found, indicating a better synthesis ability of fatty acids in the muscle and hemocytes of YOC. Overall, compared to NFC and NMC, YOC has higher nutrients and is a better food nutrient source for humans.


Subject(s)
Brachyura , Animals , Humans , Female , Male , Brachyura/genetics , Fatty Acids , Gene Expression Profiling , Muscles , Antioxidants , Carotenoids
12.
Sci Total Environ ; 905: 167073, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37714341

ABSTRACT

Agricultural and anthropogenic activities release high ammonia levels into aquatic ecosystems, severely affecting aquatic organisms. Penaeid shrimp can survive high ammonia stress conditions, but the underlying molecular mechanisms are unknown. Here, total hemocyanin and oxyhemocyanin levels decreased in Penaeus vannamei plasma under high ammonia stress. When shrimp were subjected to high ammonia stress for 12 h, 24 hemocyanin (HMC) derived peptides were identified in shrimp plasma, among which one peptide, designated as HMCs27, was chosen for further analysis. Shrimp survival was significantly enhanced after treatment with the recombinant protein of HMCs27 (rHMCs27), followed by high ammonia stress. Transcriptome analysis of shrimp hepatopancreas after treatment with or without rHMCs27 followed by high ammonia stress revealed 973 significantly dysregulated genes, notable among which were genes involved in oxidation and metabolism, such as cytochrome C, catalase (CAT), isocitrate dehydrogenase, superoxide dismutase (SOD), trypsin, chymotrypsin, glutathione peroxidase, glutathione s-transferase (GST), and alanine aminotransferase (ALT). In addition, levels of key biochemical indicators, such as SOD, CAT, and total antioxidant capacity (T-AOC), were significantly enhanced, whereas hepatopancreas malondialdehyde levels and plasma pH, NH3, GST, and ALT levels were significantly decreased after rHMCs27 treatment followed by high ammonia stress. Moreover, high ammonia stress induced hepatopancreas tissue injury and apoptosis, but rHMCs27 treatment ameliorated these effects. Collectively, the current study revealed that in response to high ammonia stress, shrimp generate functional peptides, such as peptide HMCs27 from hemocyanin, which helps to attenuate the ammonia toxicity by enhancing the antioxidant system and the tricarboxylic acid cycle to decrease plasma NH3 levels and pH.


Subject(s)
Antioxidants , Penaeidae , Animals , Antioxidants/metabolism , Stress, Physiological , Hemocyanins/metabolism , Hemocyanins/pharmacology , Penaeidae/physiology , Ammonia/metabolism , Ecosystem , Superoxide Dismutase/metabolism , Peptides/metabolism
13.
Fish Shellfish Immunol ; 140: 108984, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549875

ABSTRACT

Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Phosphatidylinositol 3-Kinases , Crustacea , Signal Transduction , Immunity, Innate
14.
Dev Comp Immunol ; 148: 104898, 2023 11.
Article in English | MEDLINE | ID: mdl-37531975

ABSTRACT

Lysine crotonylation (Kcr) is a newly discovered type of post-translational modification. Although Kcr has been reported in several species, its role in crustaceans remains largely unknown. In this study, Kcr in hemocytes of mud crab (Scylla paramamosain) was characterized using pan anti-crotonyllysine antibody enrichment and high-resolution liquid chromatogram-mass spectrometry analysis after SpTRAF6 or SpEcsit silencing. Altogether, 1,800 Kcr sites with six conserved motifs were identified from 512 proteins. Subcellular localization analysis showed that the identified Kcr proteins were mainly localized to the cytoplasm, nucleus, and mitochondria. The cellular components analysis showed that the 'chromosomal region' was enriched in the hemocytes of SpTRAF6-or SpEcsit-silenced mud crabs. The KEGG and PPI analyses showed that the identified Kcr proteins in the hemocytes SpTRAF6-or SpEcsit-silenced mud crabs were related to the 'protein processing in endoplasmic reticulum'; of which the marker of endoplasmic reticulum stress (Bip) was identified to be crotonylated. These datasets present the first comprehensive analysis of the crotonylome in mud crab hemocytes, providing invaluable insights into the regulatory functions of SpTRAF6 and SpEcsit in Kcr. Additionally, our findings shed light on the potential role of these proteins in activating marker proteins during endoplasmic reticulum stress in invertebrates.


Subject(s)
Arthropod Proteins , Brachyura , Animals , Adaptor Proteins, Signal Transducing/metabolism , Arthropod Proteins/metabolism , Brachyura/metabolism , Endoplasmic Reticulum Stress , Lysine/metabolism , Protein Processing, Post-Translational , TNF Receptor-Associated Factor 6/metabolism
15.
Microbiol Spectr ; 11(4): e0131723, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37522814

ABSTRACT

The butyrate-producing bacterium Clostridium butyricum has been proven to be important in improving the growth and health benefits of aquatic animals. In this study, C. butyricum G13 was isolated for the first time from the gut of the mud crab (Scylla paramamosain). The results of this study showed that C. butyricum G13 could produce a high concentration of butyric acid and grow well in a wide range of pHs (4 to 9) and NaCl (1 to 2.5%) and bile salt (0.2 to 1.0%) concentrations. In vitro characterization revealed that C. butyricum G13 is a Gram-positive and gamma-hemolytic bacterium sensitive to most antibiotics and shows hydrophobicity and the capacity to degrade starch. In vitro fermentation using mud crab gut contents showed that C. butyricum G13 alone or in combination with galactooligosaccharides (GOS) and/or resistant starch (RS) significantly increased butyric acid production and beneficially affected the abundance and diversity of intestinal microbiota. In addition, C. butyricum G13 can improve the survival rate of mud crabs and effectively maintain the normal structure of gut morphology after infection with Vibrio parahaemolyticus. In conclusion, C. butyricum G13 can be considered a potential probiotic that improves the immune capacity and confers health benefits on mud crabs. IMPORTANCE With the development of society, more and more aquatic animals are demanded. Intensification in the aquaculture scale is facing problems, such as disease outbreaks, eutrophication of water bodies, and misuse of antibiotics. Among these challenges, disease outbreak is the most important factor directly affecting aquaculture production. It is crucial to explore new approaches effective for the prevention and control of diseases. Probiotics have been widely used in aquaculture and have shown beneficial effects on the host. In this study, the butyrate-producing bacterium Clostridium butyricum G13 was isolated for the first time from the intestine of the mud crab through in vitro fermentation. The bacterium has probiotic properties and changes the gut microbiota to be beneficial to hosts in vitro as well as protecting hosts from Vibrio parahaemolyticus infection in vivo. The outcomes of this study indicate that C. butyricum G13 can be used as a potential probiotic in mud crab aquaculture.


Subject(s)
Brachyura , Clostridium butyricum , Probiotics , Animals , Brachyura/metabolism , Brachyura/microbiology , Butyric Acid , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Intestines
16.
Fish Shellfish Immunol ; 139: 108933, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37419435

ABSTRACT

The dietary supplementation of red seaweed-derived polysaccharides has been shown to be beneficial to fish and shellfish aquaculture. However, the function of red seaweed (Gracilaria lemaneiformis)-extracted polysaccharide (GLP) on the health status of rabbitfish (Siganus canaliculatus) is still unknown. This study explored the influences of GLP on growth performance, antioxidant activity, and immunity of rabbitfish. Herein, the fish were fed commercial pelleted feed incorporated with the diverse amount of GLP: 0 (control), 0.10 (GLP0.10), and 0.15 g kg-1 (GLP0.15) for 60 days. The results demonstrated that dietary GLP0.15 significantly elevated FBW and WG, while feed utilization efficiency improved (reduced feed conversion ratio and increased protein efficiency ratio) upon GLP0.10 treatment, regarding the control (P < 0.05). Also, dietary administration of GLP0.15 suggestively improved the serum acid phosphatase and lysozyme activity as well as hepatic total antioxidant capacity, catalase, and superoxide dismutase activity. In contrast, GLP0.15decreased the serum alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and malonaldehyde activity when compared to the control (P<0.05). Moreover, the lipase (36.08 and 16.46 U/mgprot in GLP0.10 and GLP0.15, respectively) and amylase (0.43 and 0.23 U/mgprot in GLP0.10 and GLP0.15, respectively) activity recorded the maximum values than the control (8.61 and 0.13 U/mgprot, respectively).Further, the intestinal morphometry was developed (such as increased villus length, width, and area) in the fish fed with a GLP-supplemented diet compared to the control. The KEGG pathway analysis unveiled that several differentially expressed genes (DEGs) in control vs. GLP0.10 and control vs. GLP0.15 were associated with metabolic or immune-associated pathways like antigen processing and presentation, phagosome, complement and coagulation cascades, and platelet activation. The DEGs, namely C3, f5, fgb, MHC1, and cfb, were evaluated in control vs. GLP0.10 and C3 and MHC1 in control vs. GLP0.15, suggesting their possible contributions to GLP-regulated immunity. Additionally, the cumulative mortality of rabbitfish after the Vibrio parahaemolyticus challenge was lower in both GLP0.10 (8.88%) and GLP0.15 (11.11%) than in control (33.33%) (P<0.05). Thus, these findings direct the potential use of GLP as an immunostimulant and growth promoter in rabbitfish aquaculture.


Subject(s)
Gracilaria , Seaweed , Animals , Antioxidants/metabolism , Sulfates/pharmacology , Immunity, Innate/genetics , Dietary Supplements/analysis , Diet/veterinary , Fishes/metabolism , Polysaccharides/pharmacology , Animal Feed/analysis
17.
Fish Shellfish Immunol ; 139: 108881, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37279830

ABSTRACT

Tumor necrosis factor (TNF) is an inflammatory cytokine that is important in cell survival, proliferation, differentiation, and death. However, the functions of TNF in the innate immune responses of invertebrates have been less studied. In this study, SpTNF was cloned and characterized from mud crab (Scylla paramamosain) for the first time. SpTNF contains an open reading frame of 354 bp encoding 117 deduced amino acids, with a conserved C-terminal TNF homology domain (THD) domain. RNAi knockdown of SpTNF reduced hemocyte apoptosis and antimicrobial peptide (AMP) synthesis. Expression of SpTNF was initially down-regulated but subsequently up-regulated after 48 h in hemocytes of mud crabs after WSSV infection. Results of RNAi knockdown and overexpression showed that SpTNF inhibits the WSSV infection through activating apoptosis, NF-κB pathway, and AMP synthesis. Furthermore, the lipopolysaccharide-induced TNF-α factor (SpLITAF) can regulate the expression of SpTNF, induction of apoptosis, and activation of the NF-κB pathway and AMP synthesis. The expression and nuclear translocation of SpLITAF were found to be regulated by WSSV infection. Knocking down of SpLITAF increased the WSSV copy number and expression of VP28 gene. Taken together, these results proved the protective function of SpTNF, which is regulated by SpLITAF, in the immune response of mud crabs against WSSV through the regulation of apoptosis and activation of AMP synthesis.


Subject(s)
Brachyura , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Gene Expression Regulation , NF-kappa B/metabolism , Immunity, Innate/genetics , Apoptosis , Antimicrobial Peptides , Arthropod Proteins , Phylogeny , Gene Expression Profiling
18.
Int J Biol Macromol ; 246: 125561, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37364810

ABSTRACT

This study intended to characterize the Gracilaria lemaneiformis (SW)-derived polysaccharide (GLP) and explore the fermentation aspects of SW and GLP by rabbitfish (Siganus canaliculatus) intestinal microbes. The GLP was mainly composed of galactose and anhydrogalactose (at 2.0:0.75 molar ratio) with the linear mainstay of α-(1 â†’ 4) linked 3,6-anhydro-α-l-galactopyranose and ß-(1 â†’ 3)-linked galactopyranose units. The in vitro fermentation results showed that the SW and GLP could reinforce the short-chain fatty (SCFAs) production and change the diversity and composition of gut microbiota. Moreover, GLP boosted the Fusobacteria and reduced the Firmicutes abundance, while SW increased the Proteobacteria abundance. Furthermore, the adequacy of feasibly harmful bacteria (such as Vibrio) declined. Interestingly, most metabolic processes were correlated with the GLP and SW groups than the control and galactooligosaccharide (GOS)-treated groups. In addition, the intestinal microbes degrade the GLP with 88.21 % of the molecular weight reduction from 1.36 × 105 g/mol (at 0 h) to 1.6 × 104 g/mol (at 24 h). Therefore, the findings suggest that the SW and GLP have prebiotic potential and could be applied as functional feed additives in aquaculture.


Subject(s)
Gastrointestinal Microbiome , Gracilaria , Gracilaria/metabolism , Fermentation , Galactose/metabolism , Sulfates/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Fatty Acids, Volatile/metabolism
19.
Fish Shellfish Immunol Rep ; 4: 100088, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36910329

ABSTRACT

Aquaculture plays an important role in contributing to global food security and nutrition; thus, the intensification and diversification of aquaculture are increasingly considered. However, paralleling the development of the industrial scale in aquaculture, the occurrence of diseases is always an important issue that causes great losses in economics. The finding of approaches that not only improve culture production but also reduce the impact of diseases in cultured animals is crucially essential. Previously, several studies have addressed the potential application of feed additives, such as prebiotics, probiotics, synbiotics, and microbial-derived metabolites (including short-chain fatty acids-SCFAs), in aquaculture. In this review, we provide an update focusing on the health benefits of dietary supplementation with a type of SCFAs, butyrate, and its producer, Clostridium butyricum, including their effects on growth, feed utilization, body composition, intestinal structure and function, antioxidant activity, immune response, and tolerance against stress and infection in aquatic animals. The outcomes of this study may indicate more benefits of the use of C. butyricum than that of butyrate (and its forms). This review provides general knowledge of the efficacy of butyrate and C. butyricum in aquaculture.

20.
Article in English | MEDLINE | ID: mdl-36842753

ABSTRACT

In our previous study, we found that the Spfoxl-2 transcript was highly expressed in gonads and explored its potential target genes in the ovary of Scylla paramamosain. In the current study, we primally analyzed its potential target genes in the testis through RNAi and RNA-Seq technology and compared with that in the ovary. The results showed that a total of 7892 unigenes were differentially expressed after Spfoxl-2 silencing in the testis, including plenty of conserved genes involved in testicular development, such as Dmrt family genes, Sox family genes, Caspase family genes, Cdk family genes, Kinesin family genes, Fox family genes and other genes. Further analysis revealed that these differentially expressed genes (DEGs) were enriched in crucial pathways involved in spermatogenesis, such as DNA replication, Cell cycle, Spliceosome, Homologous recombination, Meiosis and Apoptosis. The comparison results of potential target genes in the ovary and testis reveal 135 common potential target genes, including some genes involved in the immune response. According to our knowledge, the present work was the first to disclose the functions of foxl-2 in the testis of crustacean species using transcriptome analysis. It not only identifies key genes and pathways involved in the testicular development of S. paramamosain, but also reveals a new molecular-level understanding of the function of foxl-2 in testicular development.


Subject(s)
Brachyura , Gene Expression Profiling , Male , Female , Animals , RNA Interference , Gonads , Testis/metabolism , Ovary/metabolism , Brachyura/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...