Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Aging (Albany NY) ; 162024 May 08.
Article in English | MEDLINE | ID: mdl-38728254

ABSTRACT

Exosomal long non-coding RNAs (LncRNAs) play a crucial role in the pathogenesis of cerebrovascular diseases. However, the expression profiles and functional significance of exosomal LncRNAs in intracranial aneurysms (IAs) remain poorly understood. Through high-throughput sequencing, we identified 1303 differentially expressed LncRNAs in the plasma exosomes of patients with IAs and healthy controls. Quantitative real-time polymerase chain reaction (qRT-PCR) verification confirmed the differential expression of LncRNAs, the majority of which aligned with the sequencing results. ATP1A1-AS1 showed the most significant upregulation in the disease group. Importantly, subsequent in vitro experiments validated that ATP1A1-AS1 overexpression induced a phenotype switching in vascular smooth muscle cells, along with promoting apoptosis and upregulating MMP-9 expression, potentially contributing to IAs formation. Furthermore, expanded-sample validation affirmed the high diagnostic value of ATP1A1-AS1. These findings suggest that ATP1A1-AS1 is a potential therapeutic target for inhibiting IAs progression and serves as a valuable clinical diagnostic marker.

2.
J Fungi (Basel) ; 10(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38535225

ABSTRACT

Peach (Prunus persica L.) is one of the most important and oldest stone fruits grown in China. Even though P. persica is one of the most commonly grown stone fruits in China, little is known about the biodiversity of microfungi associated with peach branch diseases. In the present study, samples were collected from a wide range of peach growing areas in China, and fungal pathogens associated with peach branch diseases were isolated. In total, 85 isolates were obtained and further classified into nine genera and 10 species. Most of the isolates belonged to Botryosphaeriaceae (46), including Botryosphaeria, Diplodia, Neofusicoccum, Phaeobotryon, and Lasiodiplodia species; Ascochyta, Didymella, and Nothophoma species representing Didymellaceae were also identified. Herein, we introduce Ascochyta prunus and Lasiodiplodia pruni as novel species. In addition, we report the first records of Nothophoma pruni, Neofusicoccum occulatum, and Phaeobotryon rhois on peach worldwide, and Didymella glomerata, Nothophoma quercina, and Phaeoacremonium scolyti are the first records from China. This research is the first comprehensive investigation to explore the microfungi associated with peach branch disease in China. Future studies are necessary to understand the pathogenicity and disease epidemiology of these identified species.

3.
Plant Dis ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38522091

ABSTRACT

Peach latent mosaic viroid (PLMVd) infects peach trees in China and induces a conspicuous albino phenotype (peach calico, PC) that is closely associated with variants containing a 12-14 nucleotide hairpin insertion capped by a U-rich loop. Initially, PC disease distribution was limited to parts of Italy, and it was first detected in the field in China in 2019. To explore the molecular and biological characteristics of PLMVd PC isolates in peach in China, we conducted a comprehensive analysis of disease phenotype development, and investigated the data-associated pathogenicity and in vivo dynamics of Chinese isolate PC-A2 using slash-inoculated into GF-305 peach seedlings. Inoculated seedlings displayed PC symptoms much earlier following topping treatment, and PLMVd infectivity was further assessed using bioassay and semiquantitative RT-PCR experiments. Evolutionary analysis showed that the PC isolate and its progeny variants clustered into a single phylogroup distinct from reference PC-C40 isolates from Italy, and PC-K1 and PC-K2 from South Korea. Some PC-A2 progeny variants from green leaves of PC-expressing seedlings showed unbalanced point mutations in hairpin stems compared with the PC-C40 reference sequence, and constituted a new stem insertion type. The results reveal associations between the recessive phenotypes of peach albino symptoms and base variation in hairpin stem insertions relative to the PC-C40/chloroplastic heat shock protein 90 reference sequence.

4.
Mol Plant Pathol ; 25(3): e13441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462774

ABSTRACT

RNA interference, or RNA silencing, is an important defence mechanism against viroid infection in plants. Plants encode multiple DICER-LIKE (DCL) proteins that are key components of the RNA silencing pathway. However, the roles of different DCLs in defence responses against viroid infection remain unclear. Here, we determined the function of tomato DCL2b (SlDCL2b) in defence responses against potato spindle tuber viroid (PSTVd) infection using SlDCL2b loss-of-function tomato mutant plants. Compared with wild-type plants, mutant plants were more susceptible to PSTVd infection, developing more severe symptoms earlier and accumulating higher levels of PSTVd RNAs. Moreover, we verified the feedback mechanism for the regulation of SlDCL2b expression by miR6026. Functional blocking of tomato miR6026, by expressing its target mimics, can enhance resistance to PSTVd infection in tomato plants. These findings deepen the current understanding of RNAi-based resistance against viroid infection and provide a potentially new strategy for viroid control.


Subject(s)
Solanum lycopersicum , Solanum tuberosum , Viroids , Viroids/genetics , Solanum lycopersicum/genetics , Solanum tuberosum/genetics , RNA Interference , RNA, Viral/metabolism
6.
J Inflamm Res ; 17: 1147-1160, 2024.
Article in English | MEDLINE | ID: mdl-38406326

ABSTRACT

Vitamin K (VK) comprises a group of substances with chlorophyll quinone bioactivity and exists in nature in the form of VK1 and VK2. As its initial recognition originated from the ability to promote blood coagulation, it is known as the coagulation vitamin. However, based on extensive research, VK has shown potential for the prevention and treatment of various diseases. Studies demonstrating the beneficial effects of VK on immunity, antioxidant capacity, intestinal microbiota regulation, epithelial development, and bone protection have drawn growing interest in recent years. This review article focuses on the mechanism of action of VK and its potential preventive and therapeutic effects on infections (eg, asthma, COVID-19), inflammation (eg, in type 2 diabetes mellitus, Alzheimer's disease, Parkinson's disease, cancer, aging, atherosclerosis) and autoimmune disorders (eg, inflammatory bowel disease, type 1 diabetes mellitus, multiple sclerosis, rheumatoid arthritis). In addition, VK-dependent proteins (VKDPs) are another crucial mechanism by which VK exerts anti-inflammatory and immunomodulatory effects. This review explores the potential role of VK in preventing aging, combating neurological abnormalities, and treating diseases such as cancer and diabetes. Although current research appoints VK as a therapeutic tool for practical clinical applications in infections, inflammation, and autoimmune diseases, future research is necessary to elucidate the mechanism of action in more detail and overcome current limitations.

7.
Phytochemistry ; 218: 113933, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029952

ABSTRACT

Four pairs of neolignan enantiomers (±)-1- (±)-4 with a distinctive isochroman moiety, including seven undescribed compounds, were isolated and identified from the fruits of Crataegus pinnatifida. Structural characterization of these compounds was established through comprehensive spectroscopic analyses, as well as quantum chemical calculations of ECD and NMR data. The preliminary bioassay displayed that compounds (+)-2 and (±)-3 exerted protective activities against H2O2-induced human neuroblastoma SH-SY5Y cells compared with the positive control. These bioactive compounds could be potential candidates for further pharmaceutical applications.


Subject(s)
Crataegus , Lignans , Neuroblastoma , Humans , Lignans/pharmacology , Fruit/chemistry , Crataegus/chemistry , Hydrogen Peroxide/pharmacology
8.
Mol Neurobiol ; 61(4): 2033-2048, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37843800

ABSTRACT

Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Reperfusion Injury , Transcranial Direct Current Stimulation , Rats , Animals , Neuroprotective Agents/pharmacology , Oxygen/metabolism , Reperfusion Injury/metabolism , Brain Ischemia/metabolism , Apoptosis , Infarction, Middle Cerebral Artery/metabolism
9.
J Integr Plant Biol ; 66(3): 579-622, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37924266

ABSTRACT

Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.


Subject(s)
Plant Pathology , Plant Viruses , Plant Diseases/genetics , Plants/genetics , Plants/metabolism , China
10.
Brain Res ; 1825: 148724, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38110073

ABSTRACT

Phosphoglycerate kinase 1 (PGK1) is extensively located in the cytosol and mitochondria. The role of PGK1 in ischemic neuronal injury remains elusive. In the in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R), we showed that PGK1 expression was increased in cortical neurons. Knockdown of PGK1 led to a reduction of OGD/R-induced neuronal death. The expression of cytosolic PGK1 was reduced, but the levels of mitochondrial PGK1 were increased in OGD/R-insulted neurons. Inhibiting the activity of mitochondrial PGK1 alleviated the neuronal injury after OGD/R insult. We further showed that the protein levels of TBC domain family member 15 (TBC1D15) were decreased in OGD/R-insulted neurons. Knockdown of TBC1D15 led to increased levels of mitochondrial PGK1 after OGD/R insult in cortical neurons. Moreover, increased reactive oxygen species (ROS) resulted in a reduction of TBC1D15 in OGD/R-insulted neurons. These results suggest that the upregulation of mitochondrial PGK1 by ROS-TBC1D15 signaling pathway promotes neuronal death after OGD/R injury. Mitochondrial PGK1 may act as a regulator of neuronal survival and interventions in the PGK1-dependent pathway may be a potential therapeutic strategy.


Subject(s)
Oxygen , Reperfusion Injury , Humans , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation , Glucose/metabolism , Mitochondria/metabolism , Apoptosis , Reperfusion Injury/metabolism , GTPase-Activating Proteins/metabolism , Phosphoglycerate Kinase/metabolism
12.
Plant Dis ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227434

ABSTRACT

Paspalum conjugatum (family Poaceae), locally known as Buffalo grass, is a perennial weed that can be found in rice field, residential lawn, and sod farm in Malaysia (Uddin et al. 2010; Hakim et al. 2013). In September 2022, Buffalo grass with rust symptoms and signs were collected from the lawn located in Universiti Malaysia Sabah in the province of Sabah (6°01'55.6"N, 116°07'15.7"E). The incidence was 90%. Yellow uredinia were observed primarily on the abaxial surface of the leaves. As the disease progressed, leaves were covered with coalescing pustules. Microscopic examination of pustules revealed the presence of urediniospores. Urediniospores were ellipsoid to obovoid in shape, contents in yellow, 16.4-28.8 x 14.0-22.4 µm and echinulate, with a prominent tonsure on most of the spores. A fine brush was used to collect yellow urediniospores, and genomic DNA was extracted based on Khoo et al. (2022a). The primers Rust28SF/LR5 (Vilgalys and Hester 1990; Aime et al. 2018) and CO3_F1/CO3_R1 (Vialle et al. 2009) were used to amplify partial 28S ribosomal RNA (28S) and cytochrome c oxidase III (COX3) gene fragments following the protocols of Khoo et al. (2022b). The sequences were deposited in GenBank under accession numbers OQ186624- OQ186626 (985/985 bp) (28S) and OQ200381-OQ200383 (556/556 bp) (COX3). They were 100% similar to Angiopsora paspalicola 28S (MW049243) and COX3 (MW036496) sequences. Phylogenetic analysis using maximum likelihood based on the combined 28S and COX3 sequences indicated that the isolate formed a supported clade to A. paspalicola. Koch's postulates were performed with spray inoculations of urediniospores suspended in water (106 spores/ml) on leaves of three healthy Buffalo grass leaves, while water was sprayed on three additional Buffalo grass leaves which served as control. The inoculated Buffalo grass were placed in the greenhouse. Symptoms and signs similar to those of the field collection occurred after 12 days post inoculation. No symptoms occurred on controls. To our knowledge, this is the first report of A. paspalicola causing leaf rust on P. conjugatum in Malaysia. Our findings expand the geographic range of A. paspalicola in Malaysia. Albeit P. conjugatum is a host of the pathogen, but the host range of the pathogen especially in Poaceae economic crops need to be studied. Weed management could be an effective way to eliminate inoculum sources of A. paspalicola.

13.
J Exp Bot ; 74(14): 4189-4207, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37086216

ABSTRACT

Apple necrotic mosaic virus (ApNMV) is associated with apple mosaic disease in China. However, the mechanisms of ApNMV infection, as well as host defence against the virus, are still poorly understood. Mitochondrial ATP synthase plays a fundamental role in the regulation of plant growth and development. However, mitochondrial ATP synthase function in response to virus infection remains to be defined. In the present study, a yeast two-hybrid (Y2H) screening revealed that the apple mitochondrial ATP synthase oligomycin sensitivity-conferring protein (OSCP) subunit (MdATPO) interacts with ApNMV coat protein (CP). It was further verified that overexpression of MdATPO in Nicotiana benthamiana inhibited viral accumulation. In contrast, silencing of NbATPO facilitated viral accumulation, indicating that ATPO plays a defensive role during ApNMV infection. Further investigation demonstrated that ApNMV infection accelerated abscisic acid (ABA) accumulation, and ABA negatively regulated ATPO transcription, which was related to the ability of ABA insensitive 5 (ABI5) to bind to the ABA-responsive elements (ABREs) of the ATPO promoter. Taken together, our results indicated that transcription factor ABI5 negatively regulated ATPO transcription by directly binding to its promoter, leading to the susceptibility of apple and N. benthamiana to ApNMV infection. The current study facilitates a comprehensive understanding of the intricate responses of the host to ApNMV infection.


Subject(s)
Arabidopsis Proteins , Mitochondrial Proton-Translocating ATPases , Mitochondrial Proton-Translocating ATPases/metabolism , Down-Regulation , Transcription Factors/metabolism , Abscisic Acid/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Arabidopsis Proteins/metabolism
14.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902211

ABSTRACT

The small brown planthopper (SBPH, Laodelphax striatellus) is one of the most destructive insect pests in rice (Oryza sativa), which is the world's major grain crop. The dynamic changes in the rice transcriptome and metabolome in response to planthopper female adult feeding and oviposition have been reported. However, the effects of nymph feeding remain unclear. In this study, we found that pre-infestation with SBPH nymphs increased the susceptibility of rice plants to SBPH infestation. We used a combination of broadly targeted metabolomic and transcriptomic studies to investigate the rice metabolites altered by SBPH feeding. We observed that SBPH feeding induced significant changes in 92 metabolites, including 56 defense-related secondary metabolites (34 flavonoids, 17 alkaloids, and 5 phenolic acids). Notably, there were more downregulated metabolites than upregulated metabolites. Additionally, nymph feeding significantly increased the accumulation of seven phenolamines and three phenolic acids but decreased the levels of most flavonoids. In SBPH-infested groups, 29 differentially accumulated flavonoids were downregulated, and this effect was more pronounced with infestation time. The findings of this study indicate that SBPH nymph feeding suppresses flavonoid biosynthesis in rice, resulting in increased susceptibility to SBPH infestation.


Subject(s)
Hemiptera , Oryza , Animals , Female , Oryza/genetics , Nymph , Secondary Metabolism , Gene Expression Profiling , Hemiptera/genetics
15.
BMC Nephrol ; 24(1): 73, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36964487

ABSTRACT

BACKGROUND: The systemic immune-inflammation index (SII) is an emerging prognostic marker of cancer. We aimed to explore the predictive ability of the SII on acute kidney injury (AKI) and prognosis in patients with spontaneous cerebral hemorrhage (SCH) who underwent craniotomy. METHODS: Patients with SCH who underwent craniotomy between 2014 and 2021 were enrolled in this study. The epidemiology and predictive factors for AKI after SCH were analyzed. The prognostic factors for clinical outcomes in patients with SCH and AKI were further investigated. The prognostic factors were then analyzed using a logistic regression model and a receiver operating characteristic curve. RESULTS: In total, 305 patients were enrolled in this study. Of these, 129 (42.3%) patients presented with AKI, and 176 (57.7%) patients were unremarkable. The SII (odds ratio [OR], 1.261; 95% confidence interval [CI], 1.036-1.553; P = 0.020) values and serum uric acid levels (OR, 1.004; 95% CI, 1.001-1.007; P = 0.005) were significant predictors of AKI after SCH craniotomy. The SII cutoff value was 1794.43 (area under the curve [AUC], 0.669; 95% CI, 0.608-0.730; P < 0.001; sensitivity, 65.9%; specificity, 65.1%). Of the patients with AKI, 95 and 34 achieved poor and good outcomes, respectively. SII values (OR, 2.667; 95% CI, 1.167-6.095; P = 0.020), systemic inflammation response index values (OR, 1.529; 95% CI, 1.064-2.198; P = 0.022), and Glasgow Coma Scale (GCS) scores on admission (OR, 0.593; 95% CI, 0.437-0.805; P = 0.001) were significant in the multivariate logistic regression analysis. The cutoff SII value was 2053.51 (AUC, 0.886; 95% CI, 0.827-0.946; P < 0.001; sensitivity, 78.9%; specificity, 88.2%). CONCLUSIONS: The SII may predict AKI in patients with SCH who underwent craniotomy and may also predict the short-term prognosis of these patients.


Subject(s)
Acute Kidney Injury , Uric Acid , Humans , Retrospective Studies , Prognosis , Inflammation , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Cerebral Hemorrhage
16.
Heliyon ; 9(3): e14374, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36942252

ABSTRACT

Background: Long-term differential expression of disease-associated genes is a crucial driver of pathological changes in mucinous gastric carcinoma. Therefore, there should be a correlation between depth features extracted from pathology-based full-scan images using deep learning and disease-associated gene expression. This study tried to provides preliminary evidence that long-term differentially expressed (disease-associated) genes lead to subtle changes in disease pathology by exploring their correlation, and offer a new ideas for precise analysis of pathomics and combined analysis of pathomics and genomics. Methods: Full pathological scans, gene sequencing data, and clinical data of patients with mucinous gastric carcinoma were downloaded from TCGA data. The VGG-16 network architecture was used to construct a binary classification model to explore the potential of VGG-16 applications and extract the deep features of the pathology-based full-scan map. Differential gene expression analysis was performed and a protein-protein interaction network was constructed to screen disease-related core genes. Differential, Lasso regression, and extensive correlation analyses were used to screen for valuable deep features. Finally, a correlation analysis was used to determine whether there was a correlation between valuable deep features and disease-related core genes. Result: The accuracy of the binary classification model was 0.775 ± 0.129. A total of 24 disease-related core genes were screened, including ASPM, AURKA, AURKB, BUB1, BUB1B, CCNA2, CCNB1, CCNB2, CDCA8, CDK1, CENPF, DLGAP5, KIF11, KIF20A, KIF2C, KIF4A, MELK, PBK, RRM2, TOP2A, TPX2, TTK, UBE2C, and ZWINT. In addition, differential, Lasso regression, and extensive correlation analyses were used to screen eight valuable deep features, including features 51, 106, 109, 118, 257, 282, 326, and 487. Finally, the results of the correlation analysis suggested that valuable deep features were either positively or negatively correlated with core gene expression. Conclusion: The preliminary results of this study support our hypotheses. Deep learning may be an important bridge for the joint analysis of pathomics and genomics and provides preliminary evidence for long-term abnormal expression of genes leading to subtle changes in pathology.

17.
World Neurosurg ; 173: e808-e820, 2023 May.
Article in English | MEDLINE | ID: mdl-36906089

ABSTRACT

BACKGROUND: Intracranial aneurysms (IAs) are common cerebrovascular diseases with high rates of mortality and disability. With the development of endovascular treatment technologies, the treatment of IAs has gradually turned to endovascular methods. However, because of the complex disease characteristics and technical challenges of IA treatment, surgical clipping still plays an important role. However, no summary has been performed of the research status and future trends in IA clipping. METHODS: Publications related to IA clipping from 2001 to 2021 were retrieved from the Web of Science Core Collection database. We conducted a bibliometric analysis and visualization study with the help of VOSviewer software and R program. RESULTS: We included 4104 articles from 90 countries. The volume of publications on IA clipping, in general, has increased. The United States, Japan, and China were the countries with the most contributions. The University of California, San Francisco, Mayo Clinic, and the Barrow Neurological Institute are the main research institutions. World Neurosurgery and the Journal of Neurosurgery were the most popular journal and most co-cited journal, respectively. These publications came from 12,506 authors, of whom Lawton, Spetzler, and Hernesniemi had reported the most studies. The reports from the past 21 years on IA clipping can generally be divided into 5 parts: (1) characteristics and technical difficulties of IA clipping; (2) perioperative management and imaging evaluation of IA clipping; (3) risk factors for subarachnoid hemorrhage caused by rupture after IA clipping; (4) outcomes, prognosis, and related clinical trials of IA clipping; and (5) endovascular management for IA clipping. "Occlusion," "experience," "internal carotid artery," "intracranial aneurysms," "management," and "subarachnoid hemorrhage" were the major keywords for future research hotspots. CONCLUSIONS: The results from our bibliometric study have clarified the global research status of IA clipping between 2001 and 2021. The United States contributed the most publications and citations, and World Neurosurgery and Journal of Neurosurgery can be considered landmark journals in this field. Studies regarding occlusion, experience, management, and subarachnoid hemorrhage will be the research hotspots related to IA clipping in the future.


Subject(s)
Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Intracranial Aneurysm/complications , Subarachnoid Hemorrhage/surgery , Bibliometrics , Microsurgery/adverse effects , Neurosurgical Procedures/methods
18.
J Gen Virol ; 104(2)2023 02.
Article in English | MEDLINE | ID: mdl-36802334

ABSTRACT

The coat protein (CP) of plant viruses generally has multiple functions involving infection, replication, movement and pathogenicity. Functions of the CP of prunus necrotic ringspot virus (PNRSV), the causal agent of several threatening diseases of Prunus fruit trees, are poorly studied. Previously, we identified a novel virus in apple, apple necrotic mosaic virus (ApNMV), which is phylogenetically related to PNRSV and probably associated with apple mosaic disease in China. Full-length cDNA clones of PNRSV and ApNMV were constructed, and both are infectious in cucumber (Cucumis sativus L.), an experimental host. PNRSV exhibited higher systemic infection efficiency with more severe symptoms than ApNMV. Reassortment analysis of genomic RNA segments 1-3 found that RNA3 of PNRSV could enhance the long-distance movement of an ApNMV chimaera in cucumber, indicating the association of RNA3 of PNRSV with viral long-distance movement. Deletion mutagenesis of the PNRSV CP showed that the basic motif from amino acids 38 to 47 was crucial for the CP to maintain the systemic movement of PNRSV. Moreover, we found that arginine residues 41, 43 and 47 codetermine viral long-distance movement. The findings demonstrate that the CP of PNRSV is required for long-distance movement in cucumber, which expands the functions of ilarvirus CPs in systemic infection. For the first time, we identified involvement of Ilarvirus CP protein during long-distance movement.


Subject(s)
Ilarvirus , Prunus , Ilarvirus/genetics , Ilarvirus/metabolism , RNA, Viral/metabolism , Prunus/genetics , China
19.
Adv Sci (Weinh) ; 10(3): e2204308, 2023 01.
Article in English | MEDLINE | ID: mdl-36515275

ABSTRACT

To date, viroids have been found to naturally infect only plants, resulting in substantial losses for some crops. Whether viroids or viroid-like RNAs naturally infect non-plant hosts remains unknown. Here the existence of a set of exogenous, single-stranded circular RNAs, ranging in size from 157 to 450 nucleotides, isolated from the fungus Botryosphaeria dothidea and nominated B. dothidea RNAs (BdcRNAs) is reported. BdcRNAs replicate autonomously in the nucleus via a rolling-circle mechanism following a symmetric pathway. BdcRNA infection induces symptoms, because BdcRNAs can apparently modulate, to different degrees, specific biological traits (e.g., alter morphology, decrease growth rate, attenuate virulence, and increase or decrease tolerance to osmotic and oxidative stress) of the host fungus. Overall, BdcRNAs have genome characteristics similar to those of viroids and exhibit pathogenic effects on fungal hosts. It is proposed that these novel fungus infecting RNAs should be termed mycoviroids. BdcRNA(s) may be considered additional inhabitants at the frontier of life in terms of genomic complexity, and represent a new class of acellular entities endowed with regulatory functions, and novel epigenomic carriers of biological information.


Subject(s)
Viroids , Viroids/genetics , Viroids/metabolism , RNA, Viral/genetics , Plants , Fungi/genetics , Fungi/metabolism
20.
Br J Neurosurg ; 37(2): 170-176, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34870537

ABSTRACT

OBJECTIVE: To present a consecutive 20-year series of blood blister-like aneurysms (BBAs) to show that clip-on-wrapping with a Y-shaped autologous dura mater enables treatment of BBAs with a low complication rate and a satisfactory curative result. METHODS: A retrospective review was performed from patients with BBAs of the internal carotid artery (ICA) at the Affiliated Hospital of Qingdao University from 1999 to 2019. Diagnosis and treatment options were analyzed. Outcome was assessed using the modified Rankin scale (mRS). RESULTS: A total of 30 patients with BBAs of the ICA were included. Among these patients, 20 patients underwent microsurgical treatment (15 patients were treated by clip-on-wrapping with a Y-shaped autologous dura mater), the other 10 patients underwent endovascular treatment. All patients presented with subarachnoid hemorrhage (SAH). Four angiograms were initially negative. For all patients, intraoperative rupture occurred in five cases, but no postoperative aneurysm rupture occurred in this series. Three cases with clinical or radiologic cerebral infarctions were observed. The outcome was favorable in 26 patients. CONCLUSIONS: Clip-reinforced wrapping technique using a Y-shaped autologous dura mater may be an effective method for treating BBAs.


Subject(s)
Aneurysm, Ruptured , Intracranial Aneurysm , Subarachnoid Hemorrhage , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/surgery , Intracranial Aneurysm/complications , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/surgery , Subarachnoid Hemorrhage/surgery , Aneurysm, Ruptured/diagnostic imaging , Aneurysm, Ruptured/surgery , Aneurysm, Ruptured/complications , Retrospective Studies , Cerebral Angiography , Surgical Instruments/adverse effects , Dura Mater/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...