Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
RSC Adv ; 12(14): 8578-8587, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35424787

ABSTRACT

In the current work, eleven terpolymer donors with different electron-withdrawing groups were designed and investigated based on the reported PTB7Ir to screen outstanding donors for triplet-material-based organic photovoltaics (T-OPVs). Geometry structures, frontier molecular orbital energy levels, energy driving forces (ΔE L-L), absorption spectra, energy differences between S1 and T1 states (ΔE ST), and driving forces of the triplet charge recombination (-ΔG CRT) of PTB7Ir and designed 1-11 systems were evaluated by DFT and TD-DFT methods to estimate the light absorption abilities and the charge transfer dynamics. The results show that designed 5, 8, 10 and 11 possess larger spin-orbit couplings (SOC) affinity and smaller ΔE ST and -ΔG CRT values, which could effectively suppress the triplet charge recombination process at the donor/acceptor interface. Excitingly, the designed terpolymer 10 presents enhanced light absorption, revealing that it will be a promising donor candidate for high-performance T-OPV devices. Moreover, the results can provide theoretical guidelines to predict new terpolymer donors of T-OPVs.

2.
Plants (Basel) ; 10(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807152

ABSTRACT

Filamentous temperature-sensitive protein Z (Tubulin/FtsZ) family is a group of conserved GTP-binding (guanine nucleotide-binding) proteins, which are closely related to plant tissue development and organ formation as the major component of the cytoskeleton. According to the published genome sequence information of cassava (Manihot esculenta Crantz), 23 tubulin genes (MeTubulins) were identified, which were divided into four main groups based on their type and phylogenetic characteristics. The same grouping generally has the same or similar motif composition and exon-intron structure. Collinear analysis showed that fragment repetition event is the main factor in amplification of cassava tubulin superfamily gene. The expression profiles of MeTubulin genes in various tissue were analyzed, and it was found that MeTubulins were mainly expressed in leaf, petiole, and stem, while FtsZ2-1 was highly expressed in storage root. The qRT-PCR results of the FtsZ2-1 gene under hormone and abiotic stresses showed that indole-3-acetic acid (IAA) and gibberellin A3 (GA3) stresses could significantly increase the expression of the FtsZ2-1 gene, thereby revealing the potential role of FtsZ2-1 in IAA and GA3 stress-induced responses.

3.
Int J Mol Sci ; 20(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615135

ABSTRACT

The Dynamin gene family play a significance role in many physiological processes, especially ARC5 (Accumulation and replication of chloroplasts 5) in the process of plastid division. We performed a genome-wide analysis of the cassava Dynamin family based on the published cassava genome sequence and identified ARC5. 23 cassava Dynamins (MeDynamins) were identified and renamed. 23 MeDynamins were further divided into five major groups based on their structural and phylogenetic characteristics. The segmental duplication events have a significant impact on the expansion of MeDynamins. ARC5 expression analysis showed that there were differences between leaves and roots of cassava at different developmental stages. The tissue-specific expression analysis of the MeDynamins showed that most of MeDynamins were expressed in stem apical meristem and embryogenesis, whereas ARC5 was mainly expressed in leaves. The processing of IAA (Indole-3-acetic Acid) and MeJA (Methyl Jasmonate) verified the prediction results of cis-elements, and ACR5 was closely related to plant growth and positively correlated. It also indicated that high concentrations of MeJA treatment caused the cassava defense mechanism to function in advance. In conclusion, these findings provide basic insights for functional validation of the ARC5 genes in exogenous hormonal treatments.


Subject(s)
Dynamins/genetics , Manihot/genetics , Phylogeny , Plant Development/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/genetics , Chromosome Mapping , Gene Expression Regulation, Plant , Manihot/growth & development , Multigene Family/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/genetics , Plant Roots/growth & development
4.
Phys Rev E ; 97(1-1): 012219, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448402

ABSTRACT

In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales-a linear large-scale oscillator coupled to a small scale by a nonlinear spring-and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.

5.
Int J Clin Exp Pathol ; 11(7): 3463-3470, 2018.
Article in English | MEDLINE | ID: mdl-31949724

ABSTRACT

Mucus hypersecretion by airway epithelium and plugging of the airways are primary reasons of mortality in asthma patients and major causes of asthma disease progression and exacerbation. MUC5AC protein is a major component of airway mucus. MicroRNAs (miRNAs), a class of small noncoding RNAs, have emerged as moderators of MUC5AC production and secretion and are implicated in the pathogenesis of asthma. Recently, miR-330 has been reported to be downregulated in the blood of asthmatic patients, acting as a biomarker for asthma. The role of miR-330 in asthma, however, is unclear. Here, we showed that interleukin (IL)-13 induced MUC5AC secretion and inhibited miR-330 expression in a concentration-dependent manner in human bronchial epithelial cells (HBE16). Upregulation of miR-330 in HBE16 cells inhibited IL-13-induced MUC5AC secretion while, conversely, depletion of endogenous miR-330 exacerbated MUC5AC secretion. Munc18b (Syntaxin-Binding Protein 2; STXBP2) is a limiting component of the exocytic machinery of airway epithelial cells. We identified and validated that Munc18b was a direct target of miR-330 and miR-330 regulated MUC5AC secretion in HBE16 cells by acting directly on the 3'UTR of Munc18b mRNA. Collectively, these data reveal that miR-330 inhibits IL-13-induced MUC5AC secretion in human bronchial epithelial cells by targeting Munc18b, encouraging us to further explore the potential of manipulating miR-330 in treatment of airway diseases with mucus hypersecretion.

6.
Phys Chem Chem Phys ; 19(46): 31227-31235, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29143010

ABSTRACT

The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.

7.
J Mol Graph Model ; 77: 9-16, 2017 10.
Article in English | MEDLINE | ID: mdl-28802153

ABSTRACT

A series of polymer donor materials 1-5 based on diketopyrrolopyrrole and thiophene unit which have been widely used in organic solar cells (OSCs) were investigated based on quantum chemical calculations. The effect of fluorine and cyano substitutions in polymer donor materials was focused on. Based on the investigation on electronic structures and optical properties of the reported molecules 1 and 2 and the analysis on some parameters relevant to charge dissociation ability at donor/acceptor interface constituted by 1 and 2 with PC61BM such as intermolecular charge transfer and recombination, driving force and Coulombic bound energy, we explained why fluorine substitution can improve OPV efficiency through strengthening eletron-withdrawing ability from a theoretical perspective. Then we designed cyano-substituted polymers 3-5 with the aim of obtaining better photovoltaic donor materials. The results reveal that our attempt to design donor materials which can balance large open-circuit voltage (Voc) and high short-circuit current (Jsc) in OSCs has worked out. It is worth noting that the substitutions of fluorine and cyano groups synergistically reduce energy gap and HOMO energy level of polymers 3 and 4. Moreover, 3/PC61BM and 4/PC61BM heterojunctions show over 107 and 104 times higher than 1/PC61BM on the ratios of intermolecular charge transfer and recombination rates (kinter-CT/kinter-CR). Thus, our work here may provide an efficient strategy to design promising donor materials in OPVs and we hope it could be useful in the future experimental synthesis.


Subject(s)
Fluorine/chemistry , Models, Theoretical , Polymers/chemistry , Solar Energy , Electrons , Thiophenes
8.
J Mol Model ; 23(1): 28, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28078483

ABSTRACT

The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated results by means of DFT and TDDFT manifest that molecules 3 and 4 have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, the decreased electronic organization energy and the easier separation in the material surface than 1. In summary, reasonably increasing conjugate length and decreasing CN can effectively improve the PCE, which will provide a theoretical guideline for the design and synthesis of new small molecule acceptors.

9.
Dalton Trans ; 45(38): 14898-14901, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27711846

ABSTRACT

Two isostructural vanadium-based metal-organic polyhedra (denoted as VMOP-16 and VMOP-17) were synthesized by a solvothermal method, which are built from unprecedented {V7} isopolyoxometalate clusters and dicarboxylate ligands. To our knowledge, the {V7} second building unit is reported for the first time and features the highest nuclearity of vanadium-oxygen clusters compared with reported vanadium-based MOPs.

10.
Inorg Chem ; 55(17): 8770-5, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27518591

ABSTRACT

Three new polyoxovanadate-based metal-organic polyhedra (VMOPs) have been successfully synthesized and structurally characterized. Single crystals of three VMOPs were obtained by reaction of VCl3 and different carboxylate ligands (2,5-H2TDA = thiophene-2,5-dicarboxylic acid for VMOP-4, m-H2BDC = 1,3-benzenedicarboxylic acid for VMOP-5, 2,6-H2NDC = 2,6-naphthalenedicarboxylic aid for VMOP-6) under solvothermal conditions. Though all of the three hybrids feature the same {V(V)V4(IV)} units, their structures exhibit differences changing from truncated triangular prism to truncated quadrangular prism to octahedron, mainly depending on the nature of carboxylate ligands. Furthermore, the magnetic investigations reveal that VMOP-4-6 show similar ferromagnetic behaviors.

11.
Chem Commun (Camb) ; 52(62): 9632-5, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27363544

ABSTRACT

Unprecedented Anderson-like alkoxo-polyoxovanadate [V6O6(OCH3)9(µ6-SO4)(COO)3](2-) polyanions can serve as 3-connected second building units (SBUs) that assemble with dicarboxylate or tricarboxylate ligands to form a new family of metal organic tetrahedrons of V4E6 and V4F4 type (V = vertex, E = edge, and F = face). To our knowledge, this alkoxo-polyoxovanadate-based SBU is the first ever reported.

12.
J Chem Phys ; 145(24): 244705, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28049323

ABSTRACT

A combined molecular dynamics (MD) and quantum chemical (QC) simulation method is utilized to investigate charge generation mechanism at TTF/TCNQ (tetrathiafulvalene/tetracyanoquinodimethane) heterojunction, which is a controversial donor/acceptor (D/A) interface for organic photovoltaic (OPV) devices. The TTF/TCNQ complexes extracted from MD simulation are classified into parallel and herringbone packings. And then, the amounts of charge transferred from ground states to different excited states and the corresponding energies of charge transfer (CT) state are compared and analyzed using QC simulation. Moreover, the electron transfer/recombination rates for these interfacial configurations are also studied. From these data, we have elucidated the underlying reason why TTF/TCNQ heterojunction is inadaptable to OPV application. One main reason is that large |ΔGCT| (the absolute value of Gibbs free energy change of CT) forms a large energy barrier, limiting exciton dissociation at the TTF/TCNQ heterojunction, and small |ΔGCR| (the absolute value of Gibbs free energy change of charge recombination) performs the easy recombination to the ground state.

13.
Phys Chem Chem Phys ; 16(47): 25799-808, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25250542

ABSTRACT

In the current work, a series of bithiopheneimide (BTI)-based D-A copolymers were investigated based on the reported PDTSBTI (1) to screen excellent molecules toward organic photovoltaic (OPV) donor materials. It is found that the PCE based on the proposed derivative 4, where the silicon atom is replaced with vinyl and cyano groups on the DTS unit, shows a 70 percent improvement by Scharber diagrams compared with its prototype 1. Then, the charge transfer dynamics of 1/PC71BM and 4/PC71BM were investigated, including the intermolecular charge transfer (inter-CT) and recombination (inter-CR) rates. The theoretical data demonstrate that the ratio kinter-CT/kinter-CR of 4/PC71BM heterojunction is about 1 × 10(5) times higher than that of 1/PC71BM. These results clearly reveal that the designed donor molecule 4 will be a promising candidate for high-performance OPV device. We expect that this work from electron processing at the D/A interface may provide a theoretical guideline for further optimization and design of organic copolymer donor materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...