Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Hazard Mater ; 468: 133841, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38394898

ABSTRACT

Microplastics (MPs) have been recognized as a serious new pollutant, especially nanoplastics (NPs) pose a greater threat to marine ecosystem than larger MPs. Within these ecosystems, phytoplankton serve as the foundational primary producers, playing a critical role in carbon sequestration. Copper (Cu), a vital cofactor for both photosynthesis and respiration in phytoplankton, directly influences their capacity to regulate atmospheric carbon. Therefore, we assessed the impact of NPs on Cu bioavailability and carbon sequestration capacity. The results showed that polystyrene nanoplastics (PS-NPs) could inhibit the growth of Thalassiosira weissflogii (a commonly used model marine diatom) and Chlorella pyrenoidosa (a standard strain of green algae). The concentration of Cu uptake by algae has a significant negative correlation with COPT1 (a Cu uptake protein), but positive with P-ATPase (a Cu efflux protein). Interestingly, PS-NPs exposure could reduce Cu uptake and carbon Cu sequestration capacity of algae, i.e., when the concentration of PS-NPs increases by 1 mg/L, the concentration of fixed carbon dioxide decreases by 0.0023 ppm. This provides a new perspective to reveal the influence mechanisms of PS-NPs on the relationship between Cu biogeochemical cycling and carbon source and sink.


Subject(s)
Chlorella , Diatoms , Water Pollutants, Chemical , Ecosystem , Microplastics , Plastics , Copper , Biological Availability , Carbon Sequestration , Phytoplankton , Polystyrenes
2.
Chemosphere ; 337: 139308, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37364640

ABSTRACT

Human activities, including industrial and agricultural production, as well as domestic sewage discharge, have led to heavy metal pollution and eutrophication in coastal waters. This has caused a deficiency of dissolved inorganic phosphorus (DIP), but an excess dissolved organic phosphorus (DOP) and high concentrations of zinc. However, the impact of high zinc stress and different phosphorus species on primary producers remains unclear. This study examined the impact of different phosphorus species (DIP and DOP) and high zinc stress (1.74 mg L-1) on the growth and physiology of the marine diatom Thalassiosira weissflogii. The results showed that compared to the low zinc treatment (5 µg L-1), high zinc stress significantly decreased the net growth of T. weissflogii, but the decline was weaker in the DOP group than in the DIP group. Based on changes in photosynthetic parameters and nutrient concentrations, the study suggests that the growth inhibition of T. weissflogii under high zinc stress was likely due to an increase in cell death caused by zinc toxicity, rather than a decrease in cell growth caused by photosynthesis damage. Nonetheless, T. weissflogii was able to reduce zinc toxicity by antioxidant reactions through enhancing activities of superoxide dismutase and catalase and by cationic complexation through enhancing extracellular polymeric substances, particularly when DOP served as the phosphorus source. Furthermore, DOP had a unique detoxification mechanism by producing marine humic acid, which is conducive to complexing metal cations. These results provide valuable insights into the response of phytoplankton to environmental changes in coastal oceans, particularly the effects of high zinc stress and different phosphorus species on primary producers.


Subject(s)
Diatoms , Humans , Diatoms/metabolism , Zinc/metabolism , Phosphorus/metabolism , Phytoplankton/metabolism , Metals/metabolism
3.
Sci Total Environ ; 883: 163812, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37121328

ABSTRACT

More than 80 % of the primary biomass in marine environments is provided by phytoplankton. The primary mechanism in the trace element sink is the absorption of trace elements by phytoplankton. Because of their difficult degradability and bioaccumulation, petroleum hydrocarbons are one of the most significant and priority organic contaminants in the marine environment. This study chose Chlorella pyrenoidosa as the model alga to be exposed to short and medium-term petroleum hydrocarbons. The ecological risk of accidental and persistent petroleum hydrocarbon contamination was thoroughly assessed. The interaction and intergenerational transmission of phytoplankton physiological markers and trace element absorption were explored to reflect the change in primary biomass and trace element sink. C. pyrenoidosa could produce a large number of reactive oxygen species stimulated by the concentration and exposure time of pollutants, which activated their antioxidant activity (superoxide dismutase (SOD) activity, ß-carotene synthesis, antioxidant trace elements uptake) and peroxides production (hydroxyl radicals and malondialdehyde). The influence of the growth phase on SOD activity, copper absorption, and manganese adsorption in both persistent and accidental pollution was significant (p < 0.05, F > Fα). Adsorption of manganese and selenium positively connected with SOD, malondialdehyde, and Chlorophyl-a (p < 0.01). These findings convincingly indicate that petroleum hydrocarbon contamination can interfere with primary biomass and trace element sinks.


Subject(s)
Chlorella , Petroleum Pollution , Petroleum , Trace Elements , Biomass , Manganese , Hydrocarbons , Phytoplankton , Petroleum/toxicity , Petroleum Pollution/adverse effects , Superoxide Dismutase , Malondialdehyde
4.
Anal Chem ; 95(14): 6156-6162, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36992572

ABSTRACT

The rapid emergence of deep learning, e.g., deep convolutional neural networks (DCNNs) as one-click image analysis with super-resolution, has already revolutionized colorimetric determination. But it is severely limited by its data-hungry nature, which is overcome by combining the generative adversarial network (GAN), i.e., few-shot learning (FSL). Using the same amount of real sample data, i.e., 414 and 447 samples as training and test sets, respectively, the accuracy could be increased from 51.26 to 85.00% because 13,500 antagonistic samples are created and used by GAN as the training set. Meanwhile, the generated image quality with GAN is better than that with the commonly used convolution self-encoder method. The simple and rapid on-site determination of Cr(VI) with 1,5-diphenylcarbazide (DPC)-based test paper is a favorite for environment monitoring but is limited by unstable DPC, poor sensitivity, and narrow linear range. The chromogenic agent of DPC is protected by the blending of polyacrylonitrile (PAN) and then loaded onto thin chromatographic silica gel (SG) as a Cr(VI) colorimetric sensor (DPC/PAN/SG); its stability could be prolonged from 18 h to more than 30 days, and its repeatable reproducibility is realized via facile electrospinning. By replacing the traditional Ed method with DCNN, the detection limit is greatly improved from 1.571 mg/L to 50.00 µg/L, and the detection range is prolonged from 1.571-8.000 to 0.0500-20.00 mg/L. The complete test time is shortened to 3 min. Even without time-consuming and easily stained enrichment processing, its detection limit of Cr(VI) in the drinking water can meet on-site detection requirements by USEPA, WHO, and China.

5.
Mar Pollut Bull ; 185(Pt A): 114327, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36356339

ABSTRACT

The presence of zinc (Zn), a vital element for algal physiological functions, coupled with the silicification of diatoms implies that it plays an integral role in the carbon and silicon cycles of the sea. In this study, we examined the effects of different pCO2 and Zn levels on growth rate, elemental compositions and silicification by Thalassiosira weissflogii. The results showed that under normal pCO2 (400 µatm), cultures of T. weissflogii were depressed for growth rate and silica incorporation rate, but encouraged for cellular silicon content, Si/C, Si/N, and sinking rate when Zn deficient (0.3 pmol L-1). However, cellular silicon and sinking rate of Zn-deficient and Zn-replete (25 pmol L-1) T. weissflogii were decreased and increased at higher pCO2 (800 µatm), respectively. Thus, acidification may affect diatoms significantly differently depending on the Zn levels of the ocean and then alter the biochemical cycling of carbon and silica.


Subject(s)
Diatoms , Diatoms/physiology , Silicon , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Seawater/chemistry , Zinc/metabolism , Acids , Carbon/metabolism , Silicon Dioxide
6.
Anal Chem ; 94(42): 14801-14809, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36239120

ABSTRACT

Via the photodegradation of dissolved iron (dFe) complexes in the euphotic zone, released free Fe(III) is the most important source of bioavailable iron for eukaryotic phytoplankton. There is an urgent need to establish bioavailability-based dissolved iron speciation (BDIS) methods. Herein, an intelligent system with dFe pretreatment and a colorimetric sensor is developed for real-time monitoring of newly generated Fe(III) ions. According to the photodegradation kinetics of dFe, including kinetic constant and photogenerated time of free Fe(III) ions, 3 sources, 6 kinds, and 12 species of dFe are determined by our photocatalytic-assisted colorimetric sensor and deep learning model within 20.0 min. The algal dFe-uptake for 4 days can be predicted by BDIS with correlation coefficient 0.85, which could be explained by the hard and soft acids and bases theory (HSAB) and density functional theory (DFT). These results successfully demonstrate the proof-of-concept for photodegradation kinetics-based speciation and bioavailability assessments of dissolved metals.


Subject(s)
Deep Learning , Iron , Iron/metabolism , Biological Availability , Photolysis , Colorimetry
7.
Ecotoxicol Environ Saf ; 243: 114017, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36027715

ABSTRACT

Urea, nickel (Ni) and dissolved organic matter (DOM) from land varied with different sources have a great impact on the offshore ecosystem. The heterogeneity of Ni bioavailability and toxicity of Prorocentrum donghaiense influenced by DOM fractions incubated in urea was investigated in this study. On the occasion, chlorophyll (Chl a) concentration, growth rate, and photosynthesis parameters were monitored to track changes occurring in the test organism. Chl a concentration and photosynthesis parameters in the treatment of hydrophilic DOM (HPI) with Ni-free was significantly higher than that in the control treatment, and similar data were shown in the treatment of hydrophobic DOM(HPO)with the low Ni environment (0.17µmol L-1). However, the opposite phenomena were observed in the treatments of HPO with the higher Ni environment (over 170µmol L-1). Moreover, the EC50 of Ni for P.donghaiense incubated in HPO was relatively lower than that in HPI and control treatment, which implied that HPO elevated the toxicity of Ni. Therefore, the varied DOM compositions because of different origins, as a chelating agent and potential nutrient source in coastal waters, shows the significantly different bioavailability and toxicity of Ni with the increasing inputs of urea, which in turn influences the dynamics of phytoplankton.


Subject(s)
Dinoflagellida , Nickel , Biological Availability , Dissolved Organic Matter , Ecosystem , Nickel/toxicity , Urea
8.
Chemosphere ; 307(Pt 4): 136094, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995200

ABSTRACT

Polystyrene (PS) is selected as a representative nanoplastic and persistent pollutant for its difficult degradation and wide application. The environmental risk assessment of PS is obstructed by the toxic dye-based fluorescent PS, which false positives could be induced by the leakage of dye. For high biocompatibility, low toxicity, hydrophilicity, good water dispersibility, strong fluorescent stability, graphene oxide quantum dots (o-CQDs) are selected and embedded into PS microspheres, i.e., o-CQDs@PS, by microemulsion polymerization and denoted as CPS. Meanwhile, the sizes of CPS, e.g., 100, 150, and 200 nm, could be controlled by optimizing the type and number of water-soluble initiators. The anti-interference, low toxicity, and in vivo fluorescent tracing of CPS are proven by the coexistence of metals (including Fe2+, Fe3+, K+, Ba2+, Al3+, Zn2+, Mg2+, Ca2+, and Na+) on the fluorescence intensity of CPS, the growth of Chlorella pyrenoidosa and Artemia cysts as aquatic phytoplankton and zooplankton cultured with CPS, and the transfer of CPS from water into brine shrimp. In the concentration range of 0.1-100 mg/L, CPS can be quantitatively determined, which is suitable for coastal water and wastewater treatment plants. Therefore, CPS with standard size is suitable as reference material of PS.


Subject(s)
Chlorella , Environmental Pollutants , Nanospheres , Quantum Dots , Animals , Artemia/metabolism , Environmental Pollutants/metabolism , Graphite , Microplastics , Polystyrenes/toxicity , Quantum Dots/toxicity , Water/metabolism
9.
J Pharm Anal ; 12(3): 436-445, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35811619

ABSTRACT

As the most commonly used antipyretic and analgesic drug, paracetamol (PA) coexists with neurotransmitter dopamine (DA) in real biological samples. Their simultaneous determination is extremely important for human health, but they also interfere with each other. In order to improve the conductivity, adsorption affinity, sensitivity, and selectivity of TiO2-based electrochemical sensor, N-doped carbon@TiO2 double-shelled hollow sphere (H-C/N@TiO2) is designed and synthesized by simple alcoholic and hydrothermal method, using polystyrene sphere (PS) as a template. Meanwhile, TiO2 hollow spheres (H-TiO2) or N-doped carbon hollow spheres (H-C/N) are also prepared by the same method. H-C/N@TiO2 has good conductivity, charge separation, and the highly enhanced and stable current responses for the detection of PA and DA. The detection limit and linear range are 50.0 nmol/L and 0.3-50 µmol/L for PA, 40.0 nmol/L and 0.3-50 µmol/L for DA, respectively, which are better than those of carbon-based sensors. Moreover, this electrochemical sensor, with high selectivity, strong anti-interference, high reliability, and long time durability, can be used for the simultaneous detection of PA and DA in human blood serum and saliva. The high electrochemical performance of H-C/N@TiO2 is attributed to the multi-functional combination of different layers, because of good conductivity, absorption and electrons transfer ability from in-situ N-doped carbon and electrocatalytic activity from TiO2.

10.
J Agric Food Chem ; 70(31): 9769-9778, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35895310

ABSTRACT

The high-carbohydrate, low-fat, low-protein (HC-LFP) and low-carbohydrate, high-fat, high-protein (LC-HFP) diets are the main dietary patterns worldwide. The influence of dietary patterns on bioavailable metals, gut microbes, and their interaction is still unknown. A biomimetic digestive tract with full functions is constructed to transform the diets into chyme, and the gut microbes are cultured with the corresponding chyme. The diet species-specificity in bioavailable metal content and the positive and negative correlations between bioavailable metals and microbial reproductions are disclosed. The safe dosage and maximum consumption are 369.5 and 858.6 g/d and 268.6 and 3119.0 g/d for LC-HFP and HC-LFP, respectively. When replacing HC-LFP with LC-HFP for 21 days, the bioavailability of Fe and Cr is increased 83.2% and 268.4%, respectively; the reproductions of harmful and benefical microbes are significantly increased and decreased. The prevalences of obesity, inflammation, septicemia, and cancer are increased, and then the risk of dietary pattern shift is disclosed.


Subject(s)
Gastrointestinal Microbiome , Carbohydrates , Diet, Fat-Restricted , Humans , Obesity , Risk Assessment
11.
Dalton Trans ; 51(13): 5168-5174, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35274640

ABSTRACT

It is a challenging task to explore highly active and stable noble-metal-free bifunctional electrocatalysts for water splitting, both in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a new dual-confinement strategy for the fabrication of cobalt-base phosphide in the carbon nanofibers (CNFs) was proposed via electrospinning, followed by the corresponding pyrolysis. The ultrafine phosphides derived from the pore confinement of ZIF and space confinement of the polymer revealed abundant active sites and P defects. More importantly, by introducing a second metal element Ni or Cu, the electronic structure and synergistic effect were further enhanced, and the obtained bimetallic CoNiPx-CNF electrocatalyst exhibited the remarkable performance for HER and OER, featuring the low η10 values of 154 and 269 mV in 1.0 M KOH electrolyte, respectively. CoNiPx-CNFs as a catalyst for both anode and cathode showed a current density of 10 mA cm-2 at a voltage of 1.56 V, exceeding better stability, which is superior to most non-noble metal electrocatalysts reported in a previous research. The dual-confinement strategy is believed to provide an effective and simple approach for the synthesis of high-performance and cost-efficient bifunctional electrocatalysts for overall water splitting.

12.
Environ Sci Pollut Res Int ; 29(19): 27688-27702, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34984610

ABSTRACT

Sulfadiazine (SDZ) was a persistent sulfonamide antibiotic with a potential risk to human health. The waste dipping syrup was considered useless and environmentally unfriendly solution. In this work, carbonyl-, hydroxyl-, and amino-functionalized microporous carbonaceous nanospheres were synthesized using waste dipping syrup with glucose, fructose, and nitrogen, which was used as precursor for hydrothermal and pyrolysis process. The products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), the point of zero charge (PZC), Xray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET). The carbonaceous nanospheres with large BET surface area (924.528 m2/g), micropores (2.127 nm), and high micro-porosity (89.54 %) allowed the rapid diffusion of SDZ (0.512nm×0.738 nm) into micropores of nanospheres. The majority SDZ (initial concentration = 20 mg/L) was removed (>96.8%) in the presence of 1.0 g/L nanoparticles after 40-min reaction at pH = 6.0. The adsorption capacity of SDZ onto nanospheres was 96.6 mg/g. The adsorption kinetic and equilibrium followed pseudo-first-order model and Langmuir isotherm, respectively. The intra-particle diffusion model indicated a three-step adsorption process. In addition, the regenerated nanospheres could be reused over four recycles. The optimal fabrication was realized at lower hydrothermal and pyrolysis temperature of 180 °C and 400 °C, respectively, which involved no additional chemical activating agent and had a high yield (70.8 %). Collectively, hydroxylation, carboxylation, amination, large specific surface area, and multi-microporosity may be responsible for improved adsorption performance of SDZ onto nanospheres. The findings provided a novel pathway for SDZ-loading wastewater treatment using waste syrup.


Subject(s)
Nanospheres , Water Pollutants, Chemical , Water Purification , Adsorption , Humans , Hydroxyl Radical , Kinetics , Nanospheres/chemistry , Spectroscopy, Fourier Transform Infrared , Sulfamethazine , Wastewater/chemistry , Water Pollutants, Chemical/analysis
13.
Food Chem ; 373(Pt B): 131593, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34838401

ABSTRACT

Nitrite is one of the most common carcinogens in daily food. Its simple, rapid, inexpensive, and in-field measurement is important for food safety, based on the requirements of the standard from Codex Alimentarius Commission and China. Using polyacrylonitrile (PAN) and thin layer silica gel (SG), p-aminophenylcyclic acid (SA) and naphthalene ethylenediamine hydrochloride (NEH), as carriers and chromogenic agents, respectively, PAN-NSS as nitrite color sensor is proposed. After fixing and protecting of SA and NEH with layer-upon-layer PAN, the validity period of the test paper can be prolonged from 7 days to more than 30 days. The reproducibility of PAN-NSS preparation is ensured by electrospinning. Combined with PAN-NSS, deep convolutional neural network (DCNN) and APP as a visual monitoring platform, which has the functions of rapid sampling, data processing and transmission, intuitive feedback, etc., and provides a fully integrated detection system for field detection.


Subject(s)
Colorimetry , Nitrites , China , Neural Networks, Computer , Reproducibility of Results
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-955456

ABSTRACT

As the most commonly used antipyretic and analgesic drug,paracetamol(PA)coexists with neuro-transmitter dopamine(DA)in real biological samples.Their simultaneous determination is extremely important for human health,but they also interfere with each other.In order to improve the conductivity,adsorption affinity,sensitivity,and selectivity of TiO2-based electrochemical sensor,N-doped carbon@-TiO2 double-shelled hollow sphere(H-C/N@TiO2)is designed and synthesized by simple alcoholic and hydrothermal method,using polystyrene sphere(PS)as a template.Meanwhile,TiO2 hollow spheres(H-TiO2)or N-doped carbon hollow spheres(H-C/N)are also prepared by the same method.H-C/N@TiO2 has good conductivity,charge separation,and the highly enhanced and stable current responses for the detection of PA and DA.The detection limit and linear range are 50.0 nmol/L and 0.3-50 μmol/L for PA,40.0 nmol/L and 0.3-50 μmol/L for DA,respectively,which are better than those of carbon-based sen-sors.Moreover,this electrochemical sensor,with high selectivity,strong anti-interference,high reli-ability,and long time durability,can be used for the simultaneous detection of PA and DA in human blood serum and saliva.The high electrochemical performance of H-C/N@TiO2 is attributed to the multi-functional combination of different layers,because of good conductivity,absorption and electrons transfer ability from in-situ N-doped carbon and electrocatalytic activity from TiO2.

15.
J Hazard Mater ; 416: 126146, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492932

ABSTRACT

As worldwide edible fungi, Lentinula edodes and Agaricus bisporus accumulate both essential and harmful metals. Metal bioavailability is important for metal benefit-risk assessment. A full functional model of digestive tracts (including digestion, metabolism, and absorption) is established. Under the digestive tract functions, the bioaccessible and bioavailable metals are released from edible fungi and absorbed by intestinal tract, respectively. Based on bioavailable metal contents in the intestine, safe dosage and maximum consumption are 43.52 g/d and 248.7 g/d for Agaricus bisporu, 20.59/328.9 g/d (for males/ female) and 132.9 g/d for Lentinus edodes; V, Co, Ni, Cu, Zn, Se, Cr, Cd and Pb in Agaricus bisporus and Lentinula edodes are absorbed mainly in the large intestine; Fe is mainly absorbed in small intestine; edible fungi species-specificity in metal bioavailability is observed for As and Mn, which are mainly absorbed by small and large intestine for Agaricus bisporus and Lentinus edodes, respectively; and then metal toxicity on small and large intestine is disclosed. Metal benefit-risk is assessed by the content of monolayer liposome-extracted metal in the chyme from small and large intestine, which is controlled by the gastrointestinal functions, metal and edible fungi species.


Subject(s)
Agaricus , Metals, Heavy , Biological Availability , Biomimetics , Digestion , Environmental Monitoring , Female , Gastrointestinal Tract/metabolism , Humans , Metals, Heavy/analysis , Risk Assessment
16.
Mar Pollut Bull ; 163: 111990, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33461075

ABSTRACT

The hydromedusa Blackfordia virginica is an invasive species that has disrupted coastal marine food webs throughout the world. Here, we report the response of plankton community to B. virginica blooms in a subtropical lagoon in China. Chlorophyll-a concentrations increased after the peak of B. virginica abundance, which was coincident with high concentrations of ammonium. An increase of the biomass and composition of pico- and nano-phytoplankton during the bloom resulted from bottom-up effects due to the nutrients excreted by B. virginica. The average size and grazing rates of microzooplankton concurrently decreased. The negative correlation between the abundances of B. virginica and microzooplankton was accurately simulated by a generalized linear model and redundancy analysis. This study provided empirical evidence of the impacts of the B. virginica bloom on the food web and the mechanisms responsible for those effects. These impacts may lead to serious ecological and environmental consequences for the lagoonal ecosystem.


Subject(s)
Ecosystem , Plankton , Biomass , China , Food Chain , Phytoplankton
17.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5770-5776, 2020 Dec.
Article in Chinese | MEDLINE | ID: mdl-33496118

ABSTRACT

Trace metals deficiency or excess are associated with the etiology and pathogenesis of rheumatoid arthritis(RA). Aconiti Radix Cocta(A) and Paeoniae Radix Alba(B) are commonly used together for the treatment of RA. In this study, we aim to determine anti-arthritic-related metal bioavailability in the compatibility of herb A and B for avoiding metal deficiency or excess, and optimize the combination ratio of herb A and B, accordingly. Anti-arthritic-related metal bioaccessibility were evaluated by in vitro simulator of all gastrointestinal tract(including mouth, stomach, small and large intestines), and the roles of gastrointestinal digestive enzymes and intestinal microflora were investigated. Anti-arthritic-related metal bioavailability was assessed by the affinity adsorption with liposomes. The results indicated that compatibility proportion of corresponding herbal plants, gastrointestinal digestion and microbial metabolic, which could affect metal digestion and absorption. The optimal compatibility proportion of 1 A∶1 B is recommended, according to the dose of anti-arthritic-related metal bioavailability, which is often chosen for clinical practice of RA therapy. Thus, anti-arthritic-related metal bioavailability might be the key active substances for RA treatment.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Paeonia , Biological Availability
18.
Environ Pollut ; 259: 113821, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31884212

ABSTRACT

Human-induced temperature changes influence coastal regions, both via thermal pollution and ocean warming, which exerts profound effects on the chemistry of metals and the physiology of organisms. However, it remains unknown whether the increased temperature of discharged water or ocean warming, as a result of climate change, lead to an increase of human health risks associated with the consumption of sea foods. In this study, the influence of temperature on metal accumulation by oysters was studied in individuals collected from a coastal area affected by the thermal water discharge of the Houshi Power Plant, China. The bioaccumulation factor (BAF) and oral bioavailability (OBA) of metals in oysters was determined. Elevated temperatures led to an increase in BAF for Cu, Zn, Hg, and Cd (p < 0.05), but no change was observed for As and Pb (p > 0.05). The OBA for Cd, As, and Pb correlated positively to elevated temperatures (p < 0.05). However, for Cu and Zn, OBA was negatively correlated with increasing temperature (p < 0.05). As, Pb, and Cd in the trophically available metal (defined as a sum of heat-stable proteins, heat-denaturable proteins, and organelles) was significantly elevated at the highest temperature seawater site (site A) compared to the lowest seawater site (site B). Thus, the irregular variation of OBA for each metal may be the result of variations in the subcellular distribution of metals and the protein quality influenced by the increased temperature. Moreover, the increased temperature and increased the hazard quotient values of As and Cd (p < 0.05 for As, n = 6, p < 0.05 for Cd, n = 6), which provided an indication of the potential risks of the consumption of oysters or other seafood to future warming under climate change scenarios.


Subject(s)
Metals, Heavy , Ostreidae , Water Pollutants, Chemical , Animals , Bioaccumulation , China , Environmental Monitoring , Humans , Oceans and Seas
19.
Chemosphere ; 237: 124430, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31369904

ABSTRACT

Coastal environment are often stress from petroleum-derived hydrocarbon pollution. However, petroleum-derived hydrocarbon is persistent organic pollutants and their biodegradation by phytoplankton is little known. Five species of marine phytoplankton, including Dunaliella salina, Chlorella sp., Conticribra weissflogii, Phaeodactylum tricornutum Bohlin, and Prorocentrum donghaiense, have been used to test their tolerance to petroleum hydrocarbon contamination. D.salina and Chlorella sp can survive in high levels of No. 0 diesel oils water-soluble fractions (WSFs, 5.0 mg L-1), furthermore, petroleum hydrocarbon could be biodegraded effectively by them (Fig. 2). The content of ß-carotene in these two species of phytoplankton has significant correlation with degradation rate of WSFs concentrations (Fig. 4), petroleum hydrocarbons could be biodegraded effectively by algae. Meanwhile, the ·OH in seawater can be removed by ß-carotene effectively so that algal cells could be protected by the ß-carotene for its strong antioxidant capacity. Therefore, ß-carotene as a coin has two sides on the degradation of WSFs. Here we explore the relationship between plankton-based ß-carotene and biodegradable adaptabllity to petroleum-derived hydrocarbon, which offers a green technology for petroleum-derived hydrocarbon treatment.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Phytoplankton/chemistry , beta Carotene/analysis , Petroleum , Petroleum Pollution/prevention & control , Plankton/chemistry , Plankton/metabolism , Seawater/chemistry , Solubility
20.
Talanta ; 201: 82-89, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31122464

ABSTRACT

Using chloroauric acid as precursor and ß-cyclodextrin (ß-CD) as reducing agent and stabilizer, ß-CD@AuNPs with negative charge were synthesized by one-step colloidal synthesis method. The positive charged carbon quantum dots (CQDs) were synthesized by one-step of sonication of cetylpyridinium chloride. Under the role of static electricity, the fluorescence resonance energy transfer (FRET) occurred between CQDs and ß-CD@AuNPs. CQDs and ß-CD@AuNPs served as the fluorescence energy donors and receptors, respectively, i.e., the fluorescence of CQDs was turned off by ß-CD@AuNPs. Based on the specific host-guest recognition between the inner cavity of ß-CD and cholesterol, CQDs was replaced by cholesterol, the FRET could be interrupted, and then the fluorescence of CQDs was turned on. A good linear relationship between cholesterol concentration (10-210 µmol L-1) and fluorescence intensity was obtained and the LOD was 343.48 nmol L-1. Because of excellent fluorescence quenching ability of FRET, the analytical performance (including LOD and linear scope) of such a turn off-on fluorescent nanosensor (e.g., CQDs/ß-CD@AuNPs) was better than nanosensor only via competitive host-guest recognition (e.g., ß-CD functionalized CQDs). The synergistic effect of competitive host-guest recognition and FRET was proved. Because of selective recognition, ultrasensitive, wide linear range, and strong anti-interference ability, CQDs/ß-CD@AuNPs as a turn off-on fluorescent nanosensor was developed to determine cholesterol in porcine serum.


Subject(s)
Cholesterol/blood , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , beta-Cyclodextrins/chemistry , Animals , Carbon/chemistry , Carbon/radiation effects , Fluorescence , Fluorescence Resonance Energy Transfer/methods , Gold/chemistry , Limit of Detection , Particle Size , Quantum Dots/radiation effects , Swine , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...