Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Small ; : e2401134, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816761

ABSTRACT

Strain engineering has been widely used to optimize platinum-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs). PtM3 (M is base metals), a well-known high-compressive-strain intermetallic alloy, shows promise as a low platinum ORR catalyst due to high intrinsic activity. However, during the alloying of Pt with a threefold amount of M, a notable phase separation between Pt and M may occur, with M particles rapidly sintering while Pt particles grow slowly, posing a challenge in achieving a well-defined PtM3 intermetallic alloy. Here, an entropy-driven Ostwald ripening reversal phenomenon is discovered that enables the synthesis of small-sized Pt(FeCoNiCu)3 intermetallic ORR catalysts. High entropy promotes the thermodynamic driving force for the alloying Pt with M, which triggers the Ostwald ripening reversal of sintered FeCoNiCu particles and facilitates the formation of uniform Pt(FeCoNiCu)3 intermetallic catalysts. The prepared Pt(FeCoNiCu)3 catalysts exhibit a high specific activity of 3.82 mA cm-2, along with a power density of ≈1.3 W cm-2 at 0.67 V and 94 °C with a cathode Pt loading of 0.1 mg cm-2 in H2-air fuel cell.

2.
Nat Commun ; 15(1): 415, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195668

ABSTRACT

Carbon supported PtCo intermetallic alloys are known to be one of the most promising candidates as low-platinum oxygen reduction reaction electrocatalysts for proton-exchange-membrane fuel cells. Nevertheless, the intrinsic trade-off between particle size and ordering degree of PtCo makes it challenging to simultaneously achieve a high specific activity and a large active surface area. Here, by machine-learning-accelerated screenings from the immense configuration space, we are able to statistically quantify the impact of chemical ordering on thermodynamic stability. We find that introducing of Cu/Ni into PtCo can provide additional stabilization energy by inducing Co-Cu/Ni disorder, thus facilitating the ordering process and achieveing an improved tradeoff between specific activity and active surface area. Guided by the theoretical prediction, the small sized and highly ordered ternary Pt2CoCu and Pt2CoNi catalysts are experimentally prepared, showing a large electrochemically active surface area of ~90 m2 gPt‒1 and a high specific activity of ~3.5 mA cm‒2.

SELECTION OF CITATIONS
SEARCH DETAIL