Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Radiother Oncol ; 197: 110367, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38834152

ABSTRACT

BACKGROUND: The number of metastatic lymph nodes (MLNs) is crucial for the survival of nasopharyngeal carcinoma (NPC), but manual counting is laborious. This study aims to explore the feasibility and prognostic value of automatic MLNs segmentation and counting. METHODS: We retrospectively enrolled 980 newly diagnosed patients in the primary cohort and 224 patients from two external cohorts. We utilized the nnUnet model for automatic MLNs segmentation on multimodal magnetic resonance imaging. MLNs counting methods, including manual delineation-assisted counting (MDAC) and fully automatic lymph node counting system (AMLNC), were compared with manual evaluation (Gold standard). RESULTS: In the internal validation group, the MLNs segmentation results showed acceptable agreement with manual delineation, with a mean Dice coefficient of 0.771. The consistency among three counting methods was as follows 0.778 (Gold vs. AMLNC), 0.638 (Gold vs. MDAC), and 0.739 (AMLNC vs. MDAC). MLNs numbers were categorized into three-category variable (1-4, 5-9, > 9) and two-category variable (<4, ≥ 4) based on the gold standard and AMLNC. These categorical variables demonstrated acceptable discriminating abilities for 5-year overall survival (OS), progression-free, and distant metastasis-free survival. Compared with base prediction model, the model incorporating two-category AMLNC-counting numbers showed improved C-indexes for 5-year OS prediction (0.658 vs. 0.675, P = 0.045). All results have been successfully validated in the external cohort. CONCLUSIONS: The AMLNC system offers a time- and labor-saving approach for fully automatic MLNs segmentation and counting in NPC. MLNs counting using AMLNC demonstrated non-inferior performance in survival discrimination compared to manual detection.

2.
Opt Lett ; 49(11): 2950-2953, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824300

ABSTRACT

Phase unwrapping (PU) algorithms play a crucial role in various phase measurement techniques. Traditional algorithms cannot work well in strong noise environments, which makes it very difficult to obtain the accurate absolute phase from the noisy wrapped phase. In this Letter, we introduce a novel, to the best of our knowledge, phase unwrapping algorithm named PD-VHS. This algorithm innovatively employs point spread function (PSF) filtering to eliminate noise from the wrapped phase. Furthermore, it combines a phase diversity (PD) wavefront reconstruction technology with a virtual Hartmann-Shack (VHS) technology for phase reconstruction and phase unwrapping of the filtered PSFs. In simulations, hundreds of random noise wrapped phases, containing the first 45 Zernike polynomials (excluding piston and the two tilt terms) and the wavefront RMS = 0.5λ and 1λ, are used to compare the classical quality-map guided algorithm, the VHS algorithm with decent noise immunity, with our PD-VHS algorithm. When signal-to-noise ratio (SNR) drops to just 2 dB, the mean root mean square errors (RMSEs) of the residual wavefront between the unwrapped result and the absolute phase of the quality-map guided algorithm and the VHS algorithm are up to 3.99λ, 0.44λ, 4.29λ, and 0.85λ, respectively; however, our algorithm RMSEs are low: 0.11λ and 0.17λ. Simulation results demonstrated that the PD-VHS algorithm significantly outperforms the quality-map guided algorithm and the VHS algorithm under large-scale noise conditions.

3.
Small Methods ; : e2400533, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874104

ABSTRACT

The two-dimensional (2-D) Janus and amphiphilic molybdenum disulfide (MoS2) nanosheet with opposite optical activities on each side (amphichiral) is synthesized by modifying sandwich-like bulk MoS2 with tannic acid and cholesterol through biphasic emulsion method. This new type of amphichiral Janus MoS2 nanosheet consists of a hydrophilic and positive optical activity tannic acid side as well as a hydrophobic and negative optical activity cholesterol side thereby characterized by circular dichroism. Surface-directed orientational differentiation assemblies are performed for the as-synthesized 2D material and are characterized by contact angle, infrared spectroscopy, X-ray photoelectron, and circular dichroism spectroscopies. The amphiphilic nature of the materials is demonstrated by the pre-organization of the nanosheets on either hydrophobic or hydrophilic surfaces, providing unprecedented properties of circular dichroism signal enhancement and wettability. Selective detachment of the surface organic groups (cholesterol and tannic acid fragments) is realized by matrix-assisted laser desorption/ionisation - time-of-flight (MALDI-TOF) mass spectrometry, and the dual substrate release in tissue is detected by ex vivo mass spectrometry imaging.

4.
J Ethnopharmacol ; : 118481, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909825

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Potentilla Anserina Linnaeus, a traditional Chinese herb with ethnic characteristics, is considered a superior material by the people of Qinghai and Tibet. Traditionally, it has been used to invigorate the spleen, quench thirst, tonify the blood, astringing to stop bleeding, and relieve diarrhea. This is the reason for its frequent usage in treating spleen deficiency, diarrhea, and various bleeding disorders. At the same time, P. anserina is often consumed as food by the Tibetan people to obtain nourishment and health benefits. AIM OF THE REVIEW: The present review provides a systematic description of P. anserina, covering its botany, ethnopharmacology, phytochemical constituents, and various pharmacological activities of extracts. This overview aims to provide insights into research directions and potential applications of P. anserina. MATERIALS AND METHODS: Information on P. anserina was gathered through various sources, including Google Scholar, PubMed, Elsevier, CNKI, and Web of Science. In addition, information was available from native texts and prominent ethnopharmacologists. RESULTS: So far, 154 different chemical substances have been isolated and identified from P. anserina, with tannins, flavonoids, and triterpenes accounting for the majority. Polysaccharides and triterpenes are the main material components responsible for the pharmacological activity of P. anserina. Research shows that P. anserina exhibits rich pharmacological activities, including antioxidant, antiviral, blood tonic, immune regulation, cardiovascular system treatment, diabetes treatment, and liver protection. CONCLUSIONS: Some traditional applications of P. anserina have been confirmed. However, due to incomplete evaluation indicators and other reasons, further in vitro and in vivo studies are needed to clarify its pharmacological evaluation, which remains a focus of future research. Additionally, we recommend that future studies concentrate on the quality control and safety evaluation of P. anserina to address research gaps and offer theoretical support for the plant's potential functions and clinical applications.

5.
Nat Commun ; 15(1): 3872, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719797

ABSTRACT

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Microglia , Phagocytosis , Plaque, Amyloid , Animals , Microglia/metabolism , Microglia/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/metabolism , Female , Mice , Male , Bacteroides fragilis/metabolism , Gastrointestinal Microbiome , Humans , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/pathology
6.
Heliyon ; 10(10): e31557, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803981

ABSTRACT

Accurate prediction of the prognosis of nasopharyngeal carcinoma (NPC) is important for treatment. Lymph nodes metastasis is an important predictor for distant failure and regional recurrence in patients with NPC. Traditionally, subjective radiological evaluation increases concerns regarding the accuracy and consistency of predictions. Radiomics is an objective and quantitative evaluation algorithm for medical images. This retrospective analysis was conducted based on the data of 729 patients newly diagnosed with NPC without distant metastases to evaluate the performance of radiomics pretreatment using magnetic resonance imaging (MRI)-determined metastatic lymph nodes models to predict NPC prognosis with three delineation methods. Radiomics features were extracted from all lymph nodes (ALN), largest lymph node (LLN), and largest slice of the largest lymph node (LSLN) to generate three radiomics signatures. The radiomics signatures, clinical model, and radiomics-clinic merged models were developed in training cohort for predicting overall survival (OS). The results showed that LSLN signature with clinical factors predicted OS with high accuracy and robustness using pretreatment MR-determined metastatic lymph nodes (C-index [95 % confidence interval]: 0.762[0.760-0.763]), providing a new tool for treatment planning in NPC.

7.
BMC Cancer ; 24(1): 580, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735973

ABSTRACT

BACKGROUND: SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS: SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS: SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS: Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.


Subject(s)
Apoptosis , Bone Neoplasms , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Osteosarcoma , Serine-Arginine Splicing Factors , Humans , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Up-Regulation , Alternative Splicing
8.
J Phys Chem Lett ; 15(19): 5215-5222, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38717375

ABSTRACT

Constructing heterojunctions to separate photogenerated carriers is an effective strategy for improving the efficiency of photocatalytic reactions. A J-type heterojunction is a recently reported efficient anisotropic heterojunction. Herein, taking anisotropic ZnIn2S4 (ZIS) nanosheets as an example of a type-II heterojunction, we report for the first time the concept of open and closed structures (O and C structure) of J-type heterojunctions. A simple ammonia-post-treatment method was employed to prepare the O- and C-structured J-type ZnIn2S4/In(OH)3 (ZIS/IOH) heterojunctions. The O-structured J-type ZIS/IOH (OJ-ZIS/IOH) heterojunction exhibits a high hydrogen production activity, reaching 400 µmol·h-1, 2.67 times higher than that of pristine ZIS. However, the activity of the C-structured heterojunction (CJ-ZIS/IOH) is close to that of pristine ZIS. The findings emphasize the importance of the cooperation of photogenerated carrier separation and transport in J-type heterojunctions, providing insights into developing efficient heterojunction photocatalysts.

9.
Front Endocrinol (Lausanne) ; 15: 1344282, 2024.
Article in English | MEDLINE | ID: mdl-38681769

ABSTRACT

Background and aims: Hyperthyroidism is an endocrine disease with multiple etiologies and manifestations. Heart failure (HF) is a common, costly, and deadly medical condition in clinical practice. Numerous studies have suggested that abnormal thyroid function can induce or aggravate the development of heart disease. However, no study has demonstrated a causal relationship between hyperthyroidism and heart failure. Therefore, the purpose of this study was to explore the causal link between hyperthyroidism and HF. Methods: Summary data for genetically predicted hyperthyroidism were obtained from a genetic association study. The data examined for genetically determined all-cause heart failure came from 218,208 individuals from the FinnGen Consortium. Two-sample Mendelian randomization (MR) analysis was used to estimate the causal link between hyperthyroidism and heart failure. Statistical analyses were conducted using the inverse variance-weighted, weighted median, simple median, weighted mode, MR-PRESSO (number of distribution = 5000), MR-Egger, and leave-one-out. Results: The results of the inverse-variance weighted analysis indicated a causal association between hyperthyroidism and an increased risk of all-cause heart failure (IVW: ß=0.048, OR=1.049, 95%CI: [1.013 to 1.087], P=0.007). Similarly, the weighted median approach demonstrated a positive correlation between hyperthyroidism and all-cause heart failure (OR=1.049, [95% CI, 1.001-1.100]; P=0.044). Additionally, no horizontal pleiotropy or heterogeneity was observed. The leave-one-out analysis revealed that the majority of the SNP-driven associations were not influenced by a single genetic marker. Conclusion: Our study observed a causal relationship between hyperthyroidism and all-cause heart failure. Hyperthyroidism may associate with heart failure genetically.


Subject(s)
Heart Failure , Hyperthyroidism , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Hyperthyroidism/genetics , Hyperthyroidism/complications , Hyperthyroidism/epidemiology , Humans , Heart Failure/genetics , Heart Failure/epidemiology , Genetic Predisposition to Disease , Genetic Association Studies , Genome-Wide Association Study
10.
Adv Sci (Weinh) ; 11(22): e2308040, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581142

ABSTRACT

The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.

11.
Toxics ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38668506

ABSTRACT

Biochar materials have garnered attention as potential catalysts for peroxymonosulfate (PMS) activation due to their cost-effectiveness, notable specific surface area, and advantageous structural properties. In this study, a suite of plantain-derived biochar (MBB-400, MBB-600, and MBB-800), possessing a well-defined pore structure and a substantial number of uniformly distributed active sites (oxygen vacancy, OVs), was synthesized through a facile calcination process at varying temperatures (400, 600, and 800 °C). These materials were designed for the activation of PMS in the degradation of sulfamethoxazole (SMX). Experimental investigations revealed that OVs not only functioned as enriched sites for pollutants, enhancing the opportunities for free radicals (•OH/SO4•-) and surface-bound radicals (SBRs) to attack pollutants, but also served as channels for intramolecular charge transfer leaps. This role contributed to a reduction in interfacial charge transfer resistance, expediting electron transfer rates with PMS, thereby accelerating the decomposition of pollutants. Capitalizing on these merits, the MBB-800/PMS system displayed a 61-fold enhancement in the conversion rate for SMX degradation compared to inactivated MBB/PMS system. Furthermore, the MBB-800 exhibited less cytotoxicity towards rat pheochromocytoma (PC12) cells. Hence, the straightforward calcination synthesis of MBB-800 emerges as a promising biochar catalyst with vast potential for sustainable and efficient wastewater treatment and environmental remediation.

12.
Microorganisms ; 12(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38543643

ABSTRACT

We investigated biostimulation as an effective strategy for enhancing the degradation efficiency of recalcitrant organic compounds, with MSC14 (a novel polycyclic aromatic hydrocarbon degrading bacterium Pantoea dispersa MSC14) as the study material. Here, we investigated the impact of sodium gluconate on MSC14-mediated degradation of B[a]p. This study focused on the application of sodium gluconate, a biostimulant, on MSC14, targeting Benzo[a]pyrene (B[a]p) as the model pollutant. In this study, the novel PAHs-degrading bacterium P. dispersa MSC14 demonstrated the capability to degrade 24.41% of B[a]p after 4 days. The addition of the selected sodium gluconate stimulant at a concentration of 4 g/L stimulated MSC14 to degrade 54.85% of B[a]p after 16 h. Intermediate metabolites were analyzed using gas chromatography-mass spectrometry to infer the degradation pathway. The findings indicated that sodium gluconate promoted the intracellular transport of B[a]p by MSC14, along with the secretion of biosurfactants, enhancing emulsification and solubilization capabilities for improved B[a]p dissolution and degradation. Further analysis through transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of a biofilm by MSC14 and an increase in flagella as a response to B[a]p stress. Transcriptome profiling elucidated the interplay of quorum sensing systems, chemotaxis systems, and flagellar systems in the degradation mechanism. Additionally, the study uncovered the molecular basis of B[a]p transport, degradation pathways, metabolic changes, and genetic regulation. In summary, the addition of sodium gluconate promotes the degradation of B[a]p by P. dispersa MSC14, offering the advantages of being rapid, efficient, and cost-effective. This research provides an economically viable approach for the remediation of petroleum hydrocarbon pollution, with broad potential applications.

13.
Head Neck ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545637

ABSTRACT

BACKGROUND: We aimed to establish the most suitable threshold for objective response (OR) in the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 in patients with nasopharyngeal carcinoma (NPC). METHODS: According to RECIST 1.1, we retrospectively evaluated MR images of NPC lesions in patients before and after induction chemotherapy (IC). Restricted cubic spline and maximally selected rank statistics were used to determine the cut-off value. Survival rates and differences between groups were compared with Kaplan-Meier curves and log-rank tests. RESULTS: Of 1126 patients, 365 cases who received IC treatment were suitable for RECIST 1.1 evaluation. The 20% cut-off value maximized between-group differences according to maximally selected rank statistics. No difference in distant metastasis-free survival between OR and non-response groups was shown using the primary threshold of OR (30%), while it differed when 20% was employed. CONCLUSIONS: With an optimal cut-off value of 20%, RECIST may assist clinicians to accurately evaluate disease response in NPC patients.

14.
J Environ Manage ; 355: 120553, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471314

ABSTRACT

Soil remediation can be achieved through organic and synthetic amendments, but the differences in the phytomanagement of trace metal-contaminated land are unclear. We conducted an outdoor microcosm experiment to simulate the effects of organic amendment citric acid and synthetic amendments EDTA and EGTA on poplar phytomanagement of copper (Cu)- and lead (Pb)-contaminated calcareous land at doses of 0, 1, 3, and 9 mmol kg-1. We found that soil-bioavailable Cu and Pb contents increased by 2.11-27.27 and 1.48-269 times compared to the control, respectively. Additionally, synthetic amendments had a long-lasting (within 25 days) effect on metal bioavailability relative to organic amendments. Consequently, organic amendments increased the root Cu and Pb contents by 2.68-48.61% and 6.60-49.51%, respectively, whereas synthetic amendments increased them by 65.94-260% and 12.50-103%. The Cu and Pb contents in the leaves were lower than those in the roots, and increased significantly by 47.04-179% and 237-601%, respectively, only under synthetic amendments. Interestingly, none of the amendments increased the Cu and Pb content in poplar stems (<5 mg kg-1), which remained within the normal range for terrestrial plants. Regardless of the type and addition level, the amendments did not affect poplar growth. Nevertheless, synthetic amendments caused a significant redistribution of metals (Cu: 22-32%; Pb: 23-53%) from the topsoil into the subsoil within the root zone at medium and high levels relative to organic amendments. Therefore, organic and synthetic amendments can assist poplar phytomanagement with a phytostabilization strategy for Cu- and Pb-contaminated calcareous land and obtain marketable wood biomass. Moreover, collecting leaf litter is crucial when using synthetic amendments at optimum concentration levels.


Subject(s)
Metals, Heavy , Populus , Soil Pollutants , Copper , Lead , Biodegradation, Environmental , Soil Pollutants/analysis , Soil , Metals, Heavy/analysis
15.
Angew Chem Int Ed Engl ; 63(16): e202319983, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38404154

ABSTRACT

Herein, an interfacial electron redistribution is proposed to boost the activity of carbon-supported spinel NiCo2O4 catalyst toward oxygen conversion via Fe, N-doping strategy. Fe-doping into octahedron induces a redistribution of electrons between Co and Ni atoms on NiCo1.8Fe0.2O4@N-carbon. The increased electron density of Co promotes the coordination of water to Co sites and further dissociation. The generation of proton from water improves the overall activity for the oxygen reduction reaction (ORR). The increased electron density of Ni facilitates the generation of oxygen vacancies. The Ni-VO-Fe structure accelerates the deprotonation of *OOH to improve the activity toward oxygen evolution reaction (OER). N-doping modulates the electron density of carbon to form active sites for the adsorption and protonation of oxygen species. Fir wood-derived carbon endows catalyst with an integral structure to enable outstanding electrocatalytic performance. The NiCo1.8Fe0.2O4@N-carbon express high half-wave potential up to 0.86 V in ORR and low overpotential of 270 mV at 10 mA cm-2 in OER. The zinc-air batteries (ZABs) assembled with the as-prepared catalyst achieve long-term cycle stability (over 2000 cycles) with peak power density (180 mWcm-2). Fe, N-doping strategy drives the catalysis of biomass-derived carbon-based catalysts to the highest level for the oxygen conversion in ZABs.

16.
Nature ; 627(8003): 424-430, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418874

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.


Subject(s)
Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis , RNA, Bacterial , Transcriptome , DNA-Directed RNA Polymerases/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , RNA, Bacterial/analysis , RNA, Bacterial/biosynthesis , RNA, Bacterial/genetics , Transcriptome/genetics , Tuberculosis/microbiology , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription Initiation Site , Sigma Factor/metabolism , Ribosomes/metabolism , Protein Biosynthesis
17.
Asian J Psychiatr ; 94: 103965, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394743

ABSTRACT

BACKGROUND AND HYPOTHESIS: The Positive and Negative Syndrome Scale (PANSS) consists of 30 items and takes up to 50 minutes to administer and score. Therefore, this study aimed to develop and validate a machine learning-based short form of the PANSS (PANSS-MLSF) that reproduces the PANSS scores. Moreover, the PANSS-MLSF estimated the removed-item scores. STUDY DESIGN: The PANSS-MLSF was developed using an artificial neural network, and the removed-item scores were estimated using the eXtreme Gradient Boosting classifier algorithm. The reliability of the PANSS-MLSF was examined using Cronbach's alpha. The concurrent validity was examined by the association (Pearson's r) between the PANSS-MLSF and the PANSS. The convergent validity was examined by the association (Pearson's r) between the PANSS-MLSF and the Clinical Global Impression-Severity, Mini-Mental State Examination, and Lawton Instrumental Activities of Daily Living Scale. The agreement of the estimated removed-item scores with their original scores was examined using Cohen's kappa. STUDY RESULTS: Our analysis included data from 573 patients with moderate severity. The two versions of the PANSS-MLSF comprised 15 items and 9 items were proposed. The PANSS-MLSF scores were similar to the PANSS scores (mean squared error=2.6-24.4 points). The reliability, concurrent validity, and convergent validity of the PANSS-MLSF were good. Moderate to good agreement between the estimated removed-item scores and the original item scores was found in 60% of the removed items. CONCLUSION: The PANSS-MLSF offers a viable way to reduce PANSS administration time, maintain score comparability, uphold reliability and validity, and even estimate scores for the removed items.


Subject(s)
Activities of Daily Living , Humans , Reproducibility of Results , Psychometrics
18.
ChemSusChem ; : e202301779, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416074

ABSTRACT

Given the growing environmental and energy problems, developing clean, renewable electrochemical energy storage devices is of great interest. Zn-air batteries (ZABs) have broad prospects in energy storage because of their high specific capacity and environmental friendliness. The unavailability of cheap air electrode materials and effective and stable oxygen electrocatalysts to catalyze air electrodes are main barriers to large-scale implementation of ZABs. Due to the abundant biomass resources, self-doped heteroatoms, and unique pore structure, biomass-derived catalytically active carbon materials (CACs) have great potential to prepare carbon-based catalysts and porous electrodes with excellent performance for ZABs. This paper reviews the research progress of biomass-derived CACs applied to ZABs air electrodes. Specifically, the principle of ZABs and the source and preparation method of biomass-derived CACs are introduced. To prepare efficient biomass-based oxygen electrocatalysts, heteroatom doping and metal modification were introduced to improve the efficiency and stability of carbon materials. Finally, the effects of electron transfer number and H2 O2 yield in ORR on the performance of ZABs were evaluated. This review aims to deepen the understanding of the advantages and challenges of biomass-derived CACs in the air electrodes of ZABs, promote more comprehensive research on biomass resources, and accelerate the commercial application of ZABs.

19.
Anal Chem ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315069

ABSTRACT

To enhance our comprehension of the fundamental mechanisms driving tumor metabolism and metastasis, it is essential to dynamically monitor intratumoral lipid droplet (LD) and collagen processes in vivo. Traditional LD analysis in tumors predominantly relies on observations of in vitro cells or tissue slices, which unfortunately hinder real-time insights into the dynamic behavior of LDs during in vivo tumor progression. In this study, we developed a dual-modality imaging technique that combines coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy for in vivo monitoring of tumor LDs and collagen alterations, assisted by a murine breast cancer 4T1 cell-based dorsal skinfold window. Specifically, we accomplished real-time observations and quantitative analysis of the LD size, density, and collagen alignment within living tumors through CARS/SHG imaging. Additionally, our findings demonstrate that real-time LD monitoring provides a valuable means of assessing the efficacy of anticancer drugs in vivo. We evaluated the impact of adipose activators on lipid metabolism, oxidative stress, and tumor suppression by monitoring changes in LD size and density. Overall, this study highlights the potential of dual-modality CARS/SHG microscopy as a sensitive and flexible tool for antitumor therapeutic strategies.

20.
Eur Radiol ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308013

ABSTRACT

OBJECTIVE: The prognostic stratification for oral tongue squamous cell carcinoma (OTSCC) is heavily based on postoperative pathological depth of invasion (pDOI). This study aims to propose a preoperative MR T-staging system based on tumor size for non-pT4 OTSCC. METHODS: Retrospectively, 280 patients with biopsy-confirmed, non-metastatic, pT1-3 OTSCC, treated between January 2010 and December 2017, were evaluated. Multiple MR sequences, including axial T2-weighted imaging (WI), unenhanced T1WI, and axial, fat-suppressed coronal, and sagittal contrast-enhanced (CE) T1WI, were utilized to measure radiological depth of invasion (rDOI), tumor thickness, and largest diameter. Intra-class correlation (ICC) and univariate and multivariate analyses were used to evaluate measurement reproducibility, and factors' significance, respectively. Cutoff values were established using an exhaustive method. RESULTS: Intra-observer (ICC = 0.81-0.94) and inter-observer (ICC = 0.79-0.90) reliability were excellent for rDOI measurements, and all measurements were significantly associated with overall survival (OS) (all p < .001). Measuring the rDOI on axial CE-T1WI with cutoffs of 8 mm and 12 mm yielded an optimal MR T-staging system for rT1-3 disease (5-year OS of rT1 vs rT2 vs rT3: 94.0% vs 72.8% vs 57.5%). Using multivariate analyses, the proposed T-staging exhibited increasingly worse OS (hazard ratio of rT2 and rT3 versus rT1, 3.56 [1.35-9.6], p = .011; 4.33 [1.59-11.74], p = .004; respectively), which outperformed pathological T-staging based on nonoverlapping Kaplan-Meier curves and improved C-index (0.682 vs. 0.639, p < .001). CONCLUSIONS: rDOI is a critical predictor of OTSCC mortality and facilitates preoperative prognostic stratification, which should be considered in future oral subsite MR T-staging. CLINICAL RELEVANCE STATEMENT: Utilizing axial CE-T1WI, an MR T-staging system for non-pT4 OTSCC was developed by employing rDOI measurement with optimal thresholds of 8 mm and 12 mm, which is comparable with pathological staging and merits consideration in future preoperative oral subsite planning. KEY POINTS: • Tumor morphology, measuring sequences, and observers could impact MR-derived measurements and compromise the consistency with histology. • MR-derived measurements, including radiological depth of invasion (rDOI), tumor thickness, and largest diameter, have a prognostic impact on OS (all p < .001). • rDOI with cutoffs of 8 mm and 12 mm on axial CE-T1WI is an optimal predictor of OS and could facilitate risk stratification in non-pT4 OTSCC disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...