Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
World J Gastrointest Surg ; 16(8): 2409-2425, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220056

ABSTRACT

Liver cancer represents a grave hepatic condition and constitutes a significant global health concern. Surgical resection remains the principal therapeutic modality for liver cancer. Nevertheless, perioperative malnutrition exerts a notable impact on patients with liver cancer, emerging as an independent risk factor for disease mortality and adverse outcomes. Hence, precise nutritional diagnosis and timely nutritional support hold the potential to enhance therapeutic efficacy and quality of life for liver cancer patients. This study represents a meticulous foray into the literature, extracting data from PubMed, Web of Science, and EMBASE databases, with a focus on the past 5 years. It scrutinizes the impact of malnutrition on patients undergoing liver cancer surgery, the etiological underpinnings of malnutrition within this patient cohort, the critical assessment of perioperative nutritional status, and the strategic approaches to nutritional support. Utilizing rigorous inclusion and exclusion criteria, the amassed scholarly works are meticulously synthesized, methodically organized, and categorically elaborated upon. Ultimately, the authors propose the incorporation of a multidisciplinary nutrition management team during the perioperative period, comprising nutritionists, pharmacists, physicians, nurses, psychologists, and rehabilitation therapists, among other specialized professionals. Together, they collaborate to devise and implement personalized nutritional support plans, monitor patients' nutritional status, and make necessary adjustments as required. Through comprehensive management and intervention, improvements in the nutritional status of liver cancer patients can be achieved, thereby enhancing surgical success rates and facilitating postoperative recovery. It is believed that this manuscript will offer valuable insights to advance the nutritional management during the perioperative phase of liver cancer, aiding in ameliorating patients' nutritional status and treatment outcomes.

2.
Cell Physiol Biochem ; 49(2): 798-815, 2018.
Article in English | MEDLINE | ID: mdl-30165354

ABSTRACT

BACKGROUND/AIMS: In recent years, microRNA-495 (miR-495) has been reported to be a tumor-suppressor miR that is down-modulated in cancers. However, its potential mechanism remains unknown. Therefore, this study aimed to demonstrate the role of miR-495 in cardiac microvascular endothelial cell (CMEC) injury and inflammatory reaction by mediating the pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway. METHODS: Overall, 40 mice were assigned into myocardial ischemia/reperfusion injury (MIR) and sham groups. After model establishment, the levels of troponin T (TnT), troponin I (TnI), N-terminal pro-B-type natriuretic peptide (NT-proBNP), creatine kinase isoenzyme MB (CK-MB), myoglobin (MYO), tumor necrosis factor-alpha (TNF-α), and interleukin 1beta (IL-1ß) were detected by Enzyme-Linked Immunosorbent Assay (ELISA). Apoptosis was evaluated using Terminal deoxy (d)-UTP nick end labeling (TUNEL) staining, the level of NLRP3 protein was determined by immunohistochemical assay, and miR-495 was detected by in situ hybridization (ISH). The infarct size was determined using 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. The expression of miR-495 and the mRNA and protein levels of NLRP3, TNF-α, IL-1ß, IL-18 and caspase-1 were evaluated by RT-qPCR and western blot analysis. After transfection, the cells were treated with a miR-495 mimic, a miR-495 inhibitor, or siNLRP3. Cell proliferation was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and cell cycle and apoptosis by flow cytometry. RESULTS: Mice with myocardial I/R injury had elevated levels of TnT, TnI, NT-proBNP, CK-MB, MYO, TNF-α and IL-1ß; enhanced cell apoptosis; increased expression of NLRP3, TNF-α, IL-1ß, IL-18 and caspase-1; and decreased miR-495 expression. MiR-495 was confirmed to target NLRP3. Moreover, miR-495 reduced the mRNA and protein levels of NLRP3, TNF-α, IL-1ß, IL-18 and caspase-1, inhibited cell apoptosis and decreased cells at the G0/G1 phase while improving cell proliferation and increasing cells at the S phase. However, the effects of NLRP4 were proved to be reciprocal. CONCLUSION: In conclusion, the current study indicated that miR-495 improved CMEC injury and inflammation by suppressing the NLRP3 inflammasome signaling pathway.


Subject(s)
Inflammasomes/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , 3' Untranslated Regions , Animals , Antagomirs/metabolism , Apoptosis , Caspase 1/genetics , Caspase 1/metabolism , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , G1 Phase Cell Cycle Checkpoints , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA Interference , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL