Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(3-1): 034218, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849154

ABSTRACT

Electrical turbulence in the heart is considered the culprit of cardiac disease, including the fatal ventricular fibrillation. Optogenetics is an emerging technology that has the capability to produce action potentials of cardiomyocytes to affect the electric wave propagation in cardiac tissue, thereby possessing the potential to control the turbulence, by shining a rotating spiral pattern onto the tissue. In this paper, we present a method to reorder and synchronize electrical turbulence through optogenetics. A generic two-variable reaction-diffusion model and a simplified three-variable ionic cardiac model are used. We discuss cases involving either global or partial illumination.


Subject(s)
Lighting , Myocytes, Cardiac , Computer Simulation , Action Potentials/physiology , Models, Cardiovascular
2.
Phys Rev E ; 107(2-1): 024213, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932583

ABSTRACT

Many methods have been employed to investigate the drift behaviors of spiral waves in an effort to understand and control their dynamics. Drift behaviors of sparse and dense spirals induced by external forces have been investigated, yet they remain incompletely understood. Here we employ joint external forces to study and control the drift dynamics. First, sparse and dense spiral waves are synchronized by the suitable external current. Then, under another weak current or heterogeneity, the synchronized spirals undergo a directional drift, and the dependence of their drift velocity on the strength and frequency of the joint external force is studied.

3.
Phys Rev E ; 106(2-1): 024405, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109896

ABSTRACT

Spiral waves occur in various types of excitable media and their dynamics determine the spatial excitation patterns. An important type of spiral wave dynamics is drift, as it can control the position of a spiral wave or eliminate a spiral wave by forcing it to the boundary. In theoretical and experimental studies of the Belousov-Zhabotinsky reaction, it was shown that the most direct way to induce the controlled drift of spiral waves is by application of an external electric field. Mathematically such drift occurs due to the onset of additional gradient terms in the Laplacian operator describing excitable media. However, this approach does not work for cardiac excitable tissue, where an external electric field does not result in gradient terms. In this paper, we propose a method of how to induce a directed linear drift of spiral waves in cardiac tissue, which can be realized as an optical feedback control in tissue where photosensitive ion channels are expressed. We illustrate our method by using the FitzHugh-Nagumo model for cardiac tissue and the generic model of photosensitive ion channels. We show that our method works for continuous and discrete light sources and can effectively move spiral waves in cardiac tissue, or eliminate them by collisions with the boundary or with another spiral wave. We finally implement our method by using a biophysically motivated photosensitive ion channel model included to the Luo-Rudy model for cardiac cells and show that the proposed feedback control also induces directed linear drift of spiral waves in a wide range of light intensities.


Subject(s)
Heart , Computer Simulation , Feedback
4.
Phys Rev E ; 105(1-1): 014214, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193299

ABSTRACT

Spiral waves lead to dangerous arrhythmias in the cardiac system. In 2015 Burton et al. demonstrated the reversal of the spiral wave chirality through the rotating spiral-shaped illumination on the optogenetically modified cardiac monolayers. We show that this process entails the recreation of a spiral wave. We show how this methodology can be used to control and create the desired spatial excitation pattern. We found that the control is sensitive to the area of illuminated region but independent of the phase difference of the existing spiral wave and the applied spiral-shaped light. We also discovered that our methodology can temporarily resynchronize a turbulent system. The results offer numerical evidence for the control of spatial pattern in biological excitable systems with optogenetics.

5.
J Chem Phys ; 152(18): 184903, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32414246

ABSTRACT

Transport and separation of binary mixtures of active and passive particles are investigated in the presence of temperature differences. It is found that temperature differences can strongly affect the rectification and separation of the mixtures. For active particles, there exists an optimal temperature difference at which the rectified efficiency is maximal. Passive particles are not propelled and move by collisions with active particles, so the response to temperature differences is more complicated. By changing the system parameters, active particles can change their directions, while passive particles always move in the same direction. The simulation results show that the separation of mixtures is sensitive to the system parameters, such as the angular velocity, the temperature difference, and the polar alignment. The mixed particles can be completely separated under certain conditions.

6.
Phys Rev E ; 101(3-1): 032205, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289973

ABSTRACT

Many methods have been employed to investigate the drift behavior of spiral waves in an effort to understand and control their dynamics. Here, we propose a joint method to control the dynamics of spiral waves by applying both a rotating external field and periodic forcing. First, spirals in different regimes (including rigidly rotating, meandering, and drifting spirals) are synchronized by suitable rotating external fields. Then, under weak periodic forcing at frequencies equal to those of the external fields, the synchronized spirals undergo a directional and simple drift. Dependence of the drift velocity of the synchronized spiral on the initial rotational phase of the rotating external field and on the initial phase of the periodic forcing is studied in detail. We hope that our theoretical results can be observed in experiments, such as in the Belousov-Zhabotinsky reaction.

7.
Front Physiol ; 9: 1854, 2018.
Article in English | MEDLINE | ID: mdl-30618850

ABSTRACT

Background: Molting is a crucial physiological behavior during arthropod growth. In the past few years, molting as well as chitin biosynthesis triggered by molting, is subject to regulation by miRNAs. However, how many miRNAs are involved in insect molting at the genome-wide level remains unknown. Results: We deeply sequenced four samples obtained from nymphs at the 2nd-3rd and 4th-5th instars, and then identified 61 miRNAs conserved in the Arthropoda and 326 putative novel miRNAs in the brown planthopper Nilaparvata lugens, a fearful pest of rice. A total of 36 mature miRNAs with significant different expression levels at the genome scale during molting, including 19 conserved and 17 putative novel miRNAs were identified. After comparing the expression profiles, we found that most of the targets of 36 miRNAs showing significantly differential expression were involved in energy and hormone pathways. One of the 17 putative novel miRNAs, nlu-miR-173 was chosen for functional study. nlu-miR-173 acts in 20-hydroxyecdysone signaling through its direct target, N. lugens Ftz-F1(NlFtz-F1), a transcription factor. Furthermore, we found that the transcription of nlu-miR-173 was promoted by Broad-Complex (BR-C), suggesting that its involvement in the 20-hydroxyecdysone pathway contributes to proper molting function. Conclusion: We provided a comprehensive resource of miRNAs associated with insect molting and identified a novel miRNA as a potential target for pest control.

8.
Sci Rep ; 7(1): 8657, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819226

ABSTRACT

Spiral waves are shown to undergo directional drifts in the presence of ac and polarized electric fields when their frequencies are twice of the spiral frequencies. Here, we propose a quantitative description for the spiral wave drift induced by weak electric fields, and provide the explicit equations for the spiral wave drift speed and direction. Numerical simulations are performed to demonstrate the quantitative agreement with analytical results in both weakly and highly excitable media.

9.
Phys Rev E ; 95(5-1): 052218, 2017 May.
Article in English | MEDLINE | ID: mdl-28618528

ABSTRACT

Pinning of vortices by obstacles plays an important role in various systems. In the heart, anatomical reentry is created when a vortex, also known as the spiral wave, is pinned to an anatomical obstacle, leading to a class of physiologically very important arrhythmias. Previous analyses of its dynamics and instability provide fine estimates in some special circumstances, such as large obstacles or weak excitabilities. Here, to expand theoretical analyses to all circumstances, we propose a general theory whose results quantitatively agree with direct numerical simulations. In particular, when obstacles are small and pinned spiral waves are destabilized, an accurate explanation of the instability in two-dimensional media is provided by the usage of a mapping rule and dimension reduction. The implications of our results are to better understand the mechanism of arrhythmia and thus improve its early prevention.

10.
Phys Rev E ; 93(1): 012216, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871082

ABSTRACT

Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations.


Subject(s)
Electromagnetic Phenomena , Motion , Periodicity , Computer Simulation , Models, Theoretical
11.
Chaos ; 23(3): 033130, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089966

ABSTRACT

Spatial heterogeneities are commonly found in realistic systems and play significant roles in dynamics of spiral waves. We here demonstrate a novel phenomenon that a localized inhomogeneity put around the spiral core could lead to the reversal of spiral waves in an oscillatory system, e.g., the complex Ginzburg-Landau equation. With the amplitude-phase representation, we analyze underling mechanism and conditions of the wave reversal in detail, which is found to agree with the numerical evidence.


Subject(s)
Oscillometry/methods , Algorithms , Biophysics/methods , Computer Simulation , Diffusion , Humans , Models, Cardiovascular , Motion , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...