Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 13: 162, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26162993

ABSTRACT

BACKGROUND: The use of adult stem cells is limited by the quality and quantity of host stem cells. It has been demonstrated that Wharton's jelly-derived mesenchymal stem cells (WJMSCs), a primitive stromal population, could integrate into ischemic cardiac tissues and significantly improve heart function. In this randomized, controlled trial, our aim was to assess the safety and efficacy of intracoronary WJMSCs in patients with ST-elevation acute myocardial infarction (AMI). METHODS: In a multicenter trial, 116 patients with acute ST-elevation MI were randomly assigned to receive an intracoronary infusion of WJMSCs or placebo into the infarct artery at five to seven days after successful reperfusion therapy. The primary endpoint of safety: the incidence of adverse events (AEs) within 18 months, was monitored and quantified. The endpoint of efficacy: the absolute changes in myocardial viability and perfusion of the infarcted region from baseline to four months, global left ventricular ejection fraction (LVEF) from baseline to 18 months were measured using F-18-fluorodeoxyglucose positron emission computed tomography (F-18-FDG-PET) and 99mTc-sestamibi single-photon emission computed tomography (99mTc-SPECT), and two-dimensional echocardiography, respectively. RESULTS: During 18 months follow-up, AEs rates and laboratory tests including tumor, immune, and hematologic indexes were not different between the two groups. The absolute increase in the myocardial viability (PET) and perfusion within the infarcted territory (SPECT) was significantly greater in the WJMSC group [6.9 ± 0.6 % (95 %CI, 5.7 to 8.2)] and [7.1 ± 0.8 % (95 %CI, 5.4 to 8.8) than in the placebo group [3.3 ± 0.7 % (95 %CI, 1.8 to 4.7), P <0.0001] and 3.9 ± 0.6(95 %CI, 2.8 to 5.0), P = 0.002] at four months. The absolute increase in the LVEF at 18 months in the WJMSC group was significantly greater than that in the placebo group [7.8 ± 0.9 (6.0 to approximately 9.7) vs. 2.8 ± 1.2 (0.4 to approximately 5.1), P = 0.001]. Concomitantly, the absolute decreases in LV end-systolic volumes and end-diastolic volumes at 18 months in the WJMSC group were significantly greater than those in the placebo group (P = 0.0004, P = 0.004, respectively). CONCLUSIONS: Intracoronary infusion of WJMSCs is safe and effective in patients with AMI, providing clinically relevant therapy within a favorable time window. This study encourages additional clinical trials to determine whether WJMSCs may serve as a novel alternative to BMSCs for cardiac stem cell-based therapy. TRIAL REGISTRATION: Clinical Trials NCT01291329 (02/05/2011).


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/therapy , Adult , Aged , Double-Blind Method , Echocardiography , Female , Humans , Male , Middle Aged , Tomography, Emission-Computed, Single-Photon , Treatment Outcome , Ventricular Function, Left , Wharton Jelly
2.
Int J Cardiol ; 168(4): 3191-9, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-23651816

ABSTRACT

BACKGROUND: Previous studies showed improvement in heart function by injecting bone marrow mesenchymal stem cells (BMSCs) after AMI. Emerging evidence suggested that both the number and function of BMSCs decline with ageing. We designed a randomized, controlled trial to further investigate the safety and efficacy of this treatment. METHODS: Patients with ST-elevation AMI undergoing successful reperfusion treatment within 12 hours were randomly assigned to receive an intracoronary infusion of BMSCs (n=21) or standard medical treatment (n=22) (the numbers of patients were limited because of the complication of coronary artery obstruction). RESULTS: There is a closely positive correlation of the number and function of BMSCs vs. the cardiac function reflected by LVEF at baseline (r=0.679, P=0.001) and at 12-month follow-up (r=0.477, P=0.039). Six months after cell administration, myocardial viability within the infarct area by 18-FDG SPECT was improved in both groups compared with baseline, but no significant difference in the BMSCs compared with control groups (4.0±0.4% 95%CI 3.1-4.9 vs. 3.2±0.5% 95%CI 2.1-4.3, P=0.237). 99mTc-sestamibi SPECT demonstrated that myocardial perfusion within the infarct area in the BMSCs did not differ from the control group (4.4±0.5% 95%CI 3.2-5.5 vs. 3.9±0.6% 95%CI 2.6-5.2, P=0.594). Similarly, LVEF after 12 and 24 months follow-up did not show any difference between the two groups. In the BMSCs group, one patient suffered a serious complication of coronary artery occlusion during the BMSCs injection procedure. CONCLUSIONS: The clinical benefits of intracoronary injection of autologous BMSCs in acute STEMI patients need further investigation and reevaluation.


Subject(s)
Intraoperative Complications/diagnostic imaging , Mesenchymal Stem Cell Transplantation/methods , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/surgery , Dose-Response Relationship, Drug , Female , Humans , Injections, Intra-Arterial , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Middle Aged , Radionuclide Imaging , Single-Blind Method , Time Factors , Transplantation, Autologous , Treatment Outcome
3.
Cell Transplant ; 22(10): 1883-900, 2013.
Article in English | MEDLINE | ID: mdl-23394400

ABSTRACT

At present, there are still significant barriers that impede the clinical use of hESCs and iPS cells, including ethics, immunorejection, tumorigenesis from hESCs, and teratoma formation from iPS cells. It is therefore necessary to search for alternative sources of stem cells. WJ-MSCs originate from embryonic epiblasts and possess properties intermediate between hESCs and adult stem cells. However, the stemness properties of molecules in WJ-MSCs remain unclear compared to those of hESCs. In the present study, we isolated WJ-MSCs by a nonenzymatic method. Further, using microarray analysis by Affymetrix GeneChip and functional network analyses, we determined the degree of expression of stemness genes exhibited by the Human Stem Cell Pluripotency array. We also defined a wide range of stem cell gene expression in the WJ-MSCs in comparison with hESCs. At the same time, the definitive markers of early cardiac precursor cells and more committed progenitors were further characterized in WJ-MSCs. Our results demonstrated for the first time that WJ-MSCs had significant expression of undifferentiated human embryonic stem cell core markers, such as SOX2, NANOG, LIN28, SSEA1, SSEA3, SSEA4, KLF4, c-MYC, CRIPTO, and REX1, with a relatively lower level of expression than in hESCs. We also found WJ-MSCs have high expression of early cardiac transcription factors, such as Flk-1, Isl-1, and Nkx2.5. Functional analysis revealed signature genes of WJ-MSCs with specific roles involved in immune, cytoskeletal, and chemokine regulation, cell adhesion, and cell signaling. Our study indicated that there is a significant overlap between the stemness genes expressed by hESCs and WJ-MSCs. WJ-MSCs harbor a true stem cell population and are promising cells for stem cell-based therapies.


Subject(s)
Embryonic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism , Wharton Jelly/cytology , Cell Adhesion , Cell Differentiation , Cells, Cultured , Embryonic Stem Cells/cytology , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kruppel-Like Factor 4 , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Oligonucleotide Array Sequence Analysis , Signal Transduction , Transcription Factors/genetics , Transcriptome , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL