Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 471, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762454

ABSTRACT

BACKGROUND: Neoadjuvant immunochemotherapy (NICT) plus esophagectomy has emerged as a promising treatment option for locally advanced esophageal squamous cell carcinoma (LA-ESCC). Pathologic complete response (pCR) is a key indicator associated with great efficacy and overall survival (OS). However, there are insufficient indicators for the reliable assessment of pCR. METHODS: 192 patients with LA-ESCC treated with NICT from December 2019 to October 2023 were recruited. According to pCR status, patients were categorized into pCR group (22.92%) and non-pCR group (77.08%). Radiological features of pretreatment and preoperative CT images were extracted. Logistic and COX regressions were trained to predict pathological response and prognosis, respectively. RESULTS: Four of the selected radiological features were combined to construct an ESCC preoperative imaging score (ECPI-Score). Logistic models revealed independent associations of ECPI-Score and vascular sign with pCR, with AUC of 0.918 in the training set and 0.862 in the validation set, respectively. After grouping by ECPI-Score, a higher proportion of pCR was observed among the high-ECPI group and negative vascular sign. Kaplan Meier analysis demonstrated that recurrence-free survival (RFS) with negative vascular sign was significantly better than those with positive (P = 0.038), but not for OS (P = 0.310). CONCLUSIONS: This study demonstrates dynamic radiological features are independent predictors of pCR for LA-ESCC treated with NICT. It will guide clinicians to make accurate treatment plans.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Neoadjuvant Therapy , Humans , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Male , Female , Middle Aged , Esophageal Neoplasms/pathology , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/therapy , Esophageal Neoplasms/drug therapy , Treatment Outcome , Immunotherapy , Aged , Kaplan-Meier Estimate , Tomography, X-Ray Computed , Prognosis , Esophagectomy
2.
Cancer Res ; 83(16): 2656-2674, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37272757

ABSTRACT

As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied over the past few decades. Sequencing technological advances have enabled genome-wide analysis of ER action. However, comparison of individual studies is limited by different experimental designs, and few meta-analyses are available. Here, we established the EstroGene database through unified processing of data from 246 experiments including 136 transcriptomic, cistromic, and epigenetic datasets focusing on estradiol (E2)-triggered ER activation across 19 breast cancer cell lines. A user-friendly browser (https://estrogene.org/) was generated for multiomic data visualization involving gene inquiry under user-defined experimental conditions and statistical thresholds. Notably, annotation of metadata associated with public datasets revealed a considerable lack of experimental details. Comparison of independent RNA-seq or ER ChIP-seq data with the same design showed large variability and only strong effects could be consistently detected. Temporal estrogen response metasignatures were defined, and the association of E2 response rate with temporal transcriptional factors, chromatin accessibility, and heterogeneity of ER expression was evaluated. Unexpectedly, harmonizing 146 E2-induced transcriptomic datasets uncovered a subset of genes harboring bidirectional E2 regulation, which was linked to unique transcriptional factors and highly associated with immune surveillance in the clinical setting. Furthermore, the context dependent E2 response programs were characterized in MCF7 and T47D cell lines, the two most frequently used models in the EstroGene database. Collectively, the EstroGene database provides an informative and practical resource to the cancer research community to uniformly evaluate key reproducible features of ER regulomes and unravels modes of ER signaling. SIGNIFICANCE: A resource database integrating 246 publicly available ER profiling datasets facilitates meta-analyses and identifies estrogen response temporal signatures, a bidirectional program, and model-specific biases.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Receptors, Estrogen , Female , Humans , Breast Neoplasms/metabolism , Cell Line, Tumor , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Databases, Genetic
3.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778377

ABSTRACT

As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied in decade-long. Sequencing technological advances have enabled genome-wide analysis of ER action. However, reproducibility is limited by different experimental design. Here, we established the EstroGene database through centralizing 246 experiments from 136 transcriptomic, cistromic and epigenetic datasets focusing on estradiol-treated ER activation across 19 breast cancer cell lines. We generated a user-friendly browser ( https://estrogene.org/ ) for data visualization and gene inquiry under user-defined experimental conditions and statistical thresholds. Notably, documentation-based meta-analysis revealed a considerable lack of experimental details. Comparison of independent RNA-seq or ER ChIP-seq data with the same design showed large variability and only strong effects could be consistently detected. We defined temporal estrogen response metasignatures and showed the association with specific transcriptional factors, chromatin accessibility and ER heterogeneity. Unexpectedly, harmonizing 146 transcriptomic analyses uncovered a subset of E2-bidirectionally regulated genes, which linked to immune surveillance in the clinical setting. Furthermore, we defined context dependent E2 response programs in MCF7 and T47D cell lines, the two most frequently used models in the field. Collectively, the EstroGene database provides an informative resource to the cancer research community and reveals a diverse mode of ER signaling.

4.
J Genet Genomics ; 50(3): 151-162, 2023 03.
Article in English | MEDLINE | ID: mdl-36608930

ABSTRACT

Screening biomolecular markers from high-dimensional biological data is one of the long-standing tasks for biomedical translational research. With its advantages in both feature shrinkage and biological interpretability, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm is one of the most popular methods for the scenarios of clinical biomarker development. However, in practice, applying LASSO on omics-based data with high dimensions and low-sample size may usually result in an excess number of predictive variables, leading to the overfitting of the model. Here, we present VSOLassoBag, a wrapped LASSO approach by integrating an ensemble learning strategy to help select efficient and stable variables with high confidence from omics-based data. Using a bagging strategy in combination with a parametric method or inflection point search method, VSOLassoBag can integrate and vote variables generated from multiple LASSO models to determine the optimal candidates. The application of VSOLassoBag on both simulation datasets and real-world datasets shows that the algorithm can effectively identify markers for either case-control binary classification or prognosis prediction. In addition, by comparing with multiple existing algorithms, VSOLassoBag shows a comparable performance under different scenarios while resulting in fewer features than others. In summary, VSOLassoBag, which is available at https://seqworld.com/VSOLassoBag/ under the GPL v3 license, provides an alternative strategy for selecting reliable biomarkers from high-dimensional omics data. For user's convenience, we implement VSOLassoBag as an R package that provides multithreading computing configurations.


Subject(s)
Algorithms , Translational Research, Biomedical , Biomarkers , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...