Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Adv Mater ; 36(11): e2310145, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38016424

ABSTRACT

Tactile sensory organs for sensing 3D force, such as human skin and fish lateral lines, are indispensable for organisms. With their sensory properties enhanced by layered structures, typical sensory organs can achieve excellent perception as well as protection under frequent mechanical contact. Here, inspired by these layered structures, a split-type magnetic soft tactile sensor with wireless 3D force sensing and a high accuracy (1.33%) fabricated by developing a centripetal magnetization arrangement and theoretical decoupling model is introduced. The 3D force decoupling capability enables it to achieve a perception close to that of human skin in multiple dimensions without complex calibration. Benefiting from the 3D force decoupling capability and split design with a long effective distance (>20 mm), several sensors are assembled in air and water to achieve delicate robotic operation and water flow-based navigation with an offset <1.03%, illustrating the extensive potential of magnetic tactile sensors in flexible electronics, human-machine interactions, and bionic robots.


Subject(s)
Mechanical Phenomena , Touch , Animals , Humans , Skin , Water , Magnetic Phenomena
2.
Nano Lett ; 23(22): 10317-10325, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37937967

ABSTRACT

Thin film-based thermal flow sensors afford applications in healthcare and industries owing to their merits in preserving initial flow distributions. However, traditional thermal flow sensors are primarily applied to track flow intensities based on hot-wire or hot-film sensing mechanisms due to their relatively facile device configurations and fabrication strategies. Herein, a calorimetric thermal flow sensor is proposed based on laser direct writing to form laser-induced graphene as heaters and temperature sensors, resulting in monitoring both flow intensities and orientations. Via homogeneously surrounding spiral heaters with multiple temperature sensors, the device exhibits high sensitivity (∼162 K·s/m) at small flows with an extended flow detection range (∼25 m/s). Integrating the device with a data-acquisition board and a dual-mode graphical user interface enables wirelessly and dynamically monitoring respiration and the motion of robotic arms. This versatile flow sensor with facile manufacturing affords potentials in health inspection, remote monitoring, and studying hydrodynamics.

3.
Nat Commun ; 14(1): 7097, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925504

ABSTRACT

The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.

4.
Front Neurorobot ; 17: 1280773, 2023.
Article in English | MEDLINE | ID: mdl-37867617

ABSTRACT

Contact-rich robotic manipulation tasks such as assembly are widely studied due to their close relevance with social and manufacturing industries. Although the task is highly related to vision and force, current methods lack a unified mechanism to effectively fuse the two sensors. We consider coordinating multimodality from perception to control and propose a vision-force curriculum policy learning scheme to effectively fuse the features and generate policy. Experiments in simulations indicate the priorities of our method, which could insert pegs with 0.1 mm clearance. Furthermore, the system is generalizable to various initial configurations and unseen shapes, and it can be robustly transferred from simulation to reality without fine-tuning, showing the effectiveness and generalization of our proposed method. The experiment videos and code will be available at https://sites.google.com/view/vf-assembly.

5.
Mater Horiz ; 10(10): 4501-4509, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37551443

ABSTRACT

Phase separation has been widely exploited for fabricating structured functional materials. Generally, after being fabricated, the phase structure in a hybrid material system has been set at a specific length scale and remains unchanged during the lifespan of the material. Herein, we report a strategy to construct on-demand and reversible phase switches among homogenous, nano- and macro-phase separation states in a composite elastomer during its lifespan. We trigger the nanophase separation by super-saturating an elastomer matrix with a carefully selected small-molecule organic compound (SMOC). The nanoparticles of SMOC that precipitate out upon quenching will stretch the elastomer network, yet remain stably arrested in the elastomer matrix at low temperatures for a long time. However, at elevated temperatures, the nano-phase separation will transform into the macro-one. The elastic recovery will drive the SMOC onto the elastomer surface. The phase-separated structures can be reconfigured through the homogeneous solution state at a further elevated temperature. Taking advantage of the reversible phase switches leads to a novel strategy for designing high-performance dielectric elastomers. The in situ formed nanoparticles can boost the electro-actuation performance by eliminating electro-mechanical instability and lead to a very large actuation strain (∼146%). Once the actuator broke down, SMOC could on-demand be driven to the breakdown holes and heal the actuator.

6.
Research (Wash D C) ; 6: 0190, 2023.
Article in English | MEDLINE | ID: mdl-37426472

ABSTRACT

Heterogeneous nucleation plays a critical role in the phase transition of water, which can cause damage in various systems. Here, we report that heterogeneous nucleation can be inhibited by utilizing hydrogel coatings to isolate solid surfaces and water. Hydrogels, which contain over 90% water when fully swelled, exhibit a high degree of similarity to water. Due to this similarity, there is a great energy barrier for heterogeneous nucleation along the water-hydrogel interface. Additionally, hydrogel coatings, which possess polymer networks, exhibit higher fracture energy and more robust adhesion to solid surfaces compared to water. This high fracture and adhesion energy acts as a deterrent for fracture nucleation within the hydrogel or along the hydrogel-solid interface. With a hydrogel layer approximately 100 µm thick, the boiling temperature of water under atmospheric pressure can be raised from 100 to 108 °C. Notably, hydrogel coatings also result in remarkable reductions in cavitation pressure on multiple solid surfaces. We have demonstrated the efficacy of hydrogel coatings in preventing damages resulting from acceleration-induced cavitation. Hydrogel coatings have the potential to alter the energy landscape of heterogeneous nucleation on the water-solid interface, making them an exciting avenue for innovation in heat transfer and fluidic systems.

7.
Soft Robot ; 10(6): 1099-1114, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37437102

ABSTRACT

With intrinsic compliance, soft pneumatic actuators are widely utilized in delicate tasks. However, complex fabrication approaches and limited tunability are still problems. Here, we propose a tunable folding assembly strategy to design and fabricate soft pneumatic actuators called FASPAs (folding assembly soft pneumatic actuators). A FASPA consists only of a folded silicone tube constrained by rubber bands. By designing local stiffness and folding manner, the FASPA can be designed to achieve four configurations, pure bending, discontinuous-curvature bending, helix, and discontinuous-curvature helix. Analytical models are developed to predict the deformation and the tip trajectory of different configurations. Meanwhile, experiments are performed to verify the models. The stiffness, load capacity, output force, and step response are measured, and fatigue tests are performed. Further, grippers with single, double, and triple fingers are assembled by utilizing different types of FASPAs. As such, objects with different shapes, sizes, and weights can be easily grasped. The folding assembly strategy is a promising method to design and fabricate soft robots with complex configurations to complete tough tasks in harsh environments.

8.
ACS Macro Lett ; 12(5): 563-569, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37052196

ABSTRACT

Shape-memory polymers (SMPs) have demonstrated potential for use in automotive, biomedical, and aerospace industries. However, ensuring the sustainability of these materials remains a challenge. Herein, a sustainable approach to synthesize a semicrystalline polymer using biomass-derivable precursors via catalyst-free polyesterification is presented. The synthesized biodegradable polymer, poly(1,8-octanediol-co-1,12-dodecanedioate-co-citrate) (PODDC), exhibits excellent shape-memory properties, as evidenced by good shape fixity and shape recovery ratios of 98%, along with a large reversible actuation strain of 28%. Without the use of a catalyst, the mild polymerization enables the reconfiguration of the partially cured two-dimensional (2D) film to a three-dimensional (3D) geometric form in the middle process. This study appears to be a step forward in developing sustainable SMPs and a simple way for constructing a 3D structure of a permanent shape.

9.
Mil Med Res ; 10(1): 15, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36949519

ABSTRACT

BACKGROUND: Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging. Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies, making tissue bridging challenging. METHODS: This study proposes a tissue adhesive in the form of adhesive cryogel particles (ACPs) made from chitosan, acrylic acid, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart, intestine, liver, muscle, and stomach. Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells (LO2) and human intestinal epithelial cells (Caco-2). The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models. The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart, liver, and kidney as the ex vivo models. Furthermore, a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness, biocompatibility, and applicability in clinical surgery. RESULTS: ACPs are applicable to confined and irregular tissue defects, such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs. ACPs formed tough adhesion between tissues [(670.9 ± 50.1) J/m2 for the heart, (607.6 ± 30.0) J/m2 for the intestine, (473.7 ± 37.0) J/m2 for the liver, (186.1 ± 13.3) J/m2 for muscle, and (579.3 ± 32.3) J/m2 for the stomach]. ACPs showed considerable cytocompatibility in vitro study, with a high level of cell viability for 3 d [(98.8 ± 1.2) % for LO2 and (98.3 ± 1.6) % for Caco-2]. It has comparable inflammation repair in a ruptured rat liver (P = 0.58 compared with suture closure), the same with intestinal anastomosis in rabbits (P = 0.40 compared with suture anastomosis). Additionally, ACPs-based intestinal anastomosis (less than 30 s) was remarkably faster than the conventional suturing process (more than 10 min). When ACPs degrade after surgery, the tissues heal across the adhesion interface. CONCLUSIONS: ACPs are promising as the adhesive for clinical operations and battlefield rescue, with the capability to bridge irregular tissue defects rapidly.


Subject(s)
Adhesives , Tissue Adhesives , Rats , Humans , Swine , Rabbits , Animals , Cryogels , Caco-2 Cells , Inflammation
10.
ACS Appl Mater Interfaces ; 14(46): 52430-52439, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36351752

ABSTRACT

The design of soft robots capable of navigation underwater has received tremendous research interest due to the robots' versatile applications in marine explorations. Inspired by marine animals such as jellyfish, scientists have developed various soft robotic fishes by using elastomers as the major material. However, elastomers have a hydrophobic network without embedded water, which is different from the gel-state body of the prototypes and results in high contrast to the surrounding environment and thus poor acoustic stealth. Here, we demonstrate a manta ray-inspired soft robot fish with tailored swimming motions by using tough and stiff hydrogels as the structural elements, as well as a dielectric elastomer as the actuating unit. The switching between actuated and relaxed states of this unit under wired power leads to the flapping of the pectoral fins and swimming of the gel fish. This robot fish has good stability and swims with a fast speed (∼10 cm/s) in freshwater and seawater over a wide temperature range (4-50 °C). The high water content (i.e., ∼70 wt %) of the robot fish affords good optical and acoustic stealth properties under water. The excellent mechanical properties of the gels also enable easy integration of other functional units/systems with the robot fish. As proof-of-concept examples, a temperature sensing system and a soft gripper are assembled, allowing the robot fish to monitor the local temperature, raise warning signals by lighting, and grab and transport an object on demand. Such a robot fish should find applications in environmental detection and execution tasks under water. This work should also be informative for the design of other soft actuators and robots with tough hydrogels as the building blocks.


Subject(s)
Robotics , Animals , Robotics/methods , Hydrogels , Elastomers/chemistry , Fishes , Water
11.
Adv Mater ; 34(50): e2206393, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36189869

ABSTRACT

Dielectric elastomers (DEs) can demonstrate fast and large in-plane expansion/contraction due to electric field (e-field)-induced Maxwell stress. For robotic applications, it is often necessary that the in-plane actuation is converted into out-of-plane motions with mechanical frames. Despite their performance appeal, their high driving e-field (20-100 V µm-1 ) demands bulky power accessories and severely compromises their durability. Here, a dielectric polymer that can be programmed into diverse motions actuated under a low e-field (2-10 V µm-1 ) is reported. The material is a crystalline dynamic covalent network that can be reconfigured into arbitrary 3D geometries. This gives rise to a geometric effect that markedly amplifies the actuation, leading to designable large motions when the dielectric polymer is heated above its melting temperature to become a DE. Additionally, the crystallization transition enables dynamic multimodal motions and active deployability. These attributes result in unique design versatility for soft robots.

12.
Bioeng Transl Med ; 7(2): e10291, 2022 May.
Article in English | MEDLINE | ID: mdl-35600662

ABSTRACT

Nonuniform microstretching (NUMS) naturally occurs in real bone tissues in vivo, but its profound effects have not been identified yet. In order to explore the biological effects of NUMS and static stretch (uniform stretch [US]) on cells, a new "musical dish" device was developed. Musical signal was used to provide NUMS to cells. More stress fibers, arranging along the long axis of cells, were formed throughout the cells under NUMS, compared with US and untreated control group, although cell morphology did not show any alteration. Whole transcriptome sequencing revealed enhanced osteogenic differentiation of cells after NUMS treatment. Cells in the NUMS group showed a higher expression of bone-related genes, while genes related to stemness and other lineages were down-regulated. Our results give insights into the biological effects of NUMS and US on stem cell osteogenic differentiation, suggesting beneficial effects of micromechanical stimulus for osteogenesis. The newly developed device provides a basis for the development of NUMS derived rehabilitation technology to promote bone healing.

13.
Bioact Mater ; 18: 164-177, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35387168

ABSTRACT

A personalized medication regimen provides precise treatment for an individual and can be guided by pre-clinical drug screening. The economical and high-efficiency simulation of the liver tumor microenvironment (TME) in a drug-screening model has high value yet challenging to accomplish. Herein, we propose a simulation of the liver TME with suspended alginate-gelatin hydrogel capsules encapsulating patient-derived liver tumor multicellular clusters, and the culture of patient-derived tumor organoids(PDTOs) for personalized pre-clinical drug screening. The hydrogel capsule offers a 3D matrix environment with mechanical and biological properties similar to those of the liver in vivo. As a result, 18 of the 28 patient-derived multicellular clusters were successfully cultured as PDTOs. These PDTOs, along with hepatocyte growth factor (HGF) of non-cellular components, preserve stromal cells, including cancer-associated fibroblasts (CAFs) and vascular endothelial cells (VECs). They also maintain stable expression of molecular markers and tumor heterogeneity similar to those of the original liver tumors. Drugs, including cabazitaxel, oxaliplatin, and sorafenib, were tested in PDTOs. The sensitivity of PDTOs to these drugs differs between individuals. The sensitivity of one PDTO to oxaliplatin was validated using magnetic resonance imaging (MRI) and biochemical tests after oxaliplatin clinical treatment of the corresponding patient. Therefore, this approach is promising for economical, accurate, and high-throughput drug screening for personalized treatment.

14.
Mater Horiz ; 8(10): 2834-2841, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34486000

ABSTRACT

Soft biological tissues and muscles composed of semiflexible networks exhibit rapid strain-hardening behaviors to protect them from accidental rupture. In contrast, synthetic soft elastomers, usually featuring flexible networks, lack such behaviors, leading to a notorious issue when applying them to a promising artificial muscle technology (dielectric elastomer, DE), that is electromechanical instability (EMI) induced premature breakdown. We report that a facile thermomechanical training method can adaptively reconstruct the network of a soft triblock copolymer elastomer to transform its flexible network strands into semiflexible ones without extra chemical modifications and additives so that the electro-actuation performance is significantly enhanced by avoiding EMI. The free-standing actuators of trained elastomers exhibit a large stable electro-actuation strain and a high theoretical energy density (133%, 307 kJ m-3 at 158.1 V µm-1), and the capacity of actuating at low-temperature environments (-15 °C).

15.
Mol Med ; 27(1): 91, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34412584

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is the breakdown of the discs supporting the vertebrae. It is one of the most frequent causes of back pain worldwide. Currently, the clinical interventions for IVDD are mainly focused on symptom releases. Thus, new therapeutic options are needed. METHODS: Nucleus pulposus (NP) samples were obtained from 20 patients experiencing IVDD and 10 healthy volunteers compared for mRNA N6-methyladenosine (m6A) mRNA modification as well as methyltransferase (METT) like METTL3, METTL14, and Wilms' tumor 1-associated protein mRNA and protein abundance following exosomes exposure from mesenchymal stem cells. In addition, microRNA expressions were also compared. The correlation between the NLR family pyrin domain containing 3 (NLRP3) and METTL14 was measured by luciferase reporter assay. Cytokines were evaluated using an enzyme-linked immunosorbent assay. METTL14, NLRP3, and insulin-like growth factor 2 mRNA-binding protein 2 mRNAs were measured via a quantitative reverse transcription-polymerase chain reaction. Protein was assayed using western blots. Cell death was assessed by propidium iodide staining, lactate dehydrogenase release, gasdermin-N domain abundance, and caspase-1 activation. RESULTS: The human umbilical cord mesenchymal stem cell (hucMSC) exosomes were found to effectively improve the viability of NP cells and protect them from pyroptosis through targeting METTL14, with a methyltransferase catalyzing m6A modification. METTL14 was highly present in NP cells from IVDD patients, which stabilize NLRP3 mRNA in an IGFBP2-dependent manner. The elevated NLRP3 levels result in the increase of interleukin 1ß (IL-1ß) and IL-18 levels and trigger pyroptotic NP cell death. Such pathogenic axis could be blocked by hucMSC exosomes, which directly degrade METTL14 through exosomal miR-26a-5p. CONCLUSIONS: The results of the current study revealed the beneficial effects of hucMSC exosomes on NP cells and determined a potential mechanism inducing IVDD.


Subject(s)
Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Methyltransferases/metabolism , MicroRNAs/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleus Pulposus/metabolism , Pyroptosis/genetics , Umbilical Cord/cytology , Cell Survival/genetics , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/cytology , Methyltransferases/genetics , MicroRNAs/metabolism , Models, Biological , Nucleus Pulposus/pathology , RNA Interference
16.
Nature ; 591(7848): 66-71, 2021 03.
Article in English | MEDLINE | ID: mdl-33658693

ABSTRACT

The deep sea remains the largest unknown territory on Earth because it is so difficult to explore1-4. Owing to the extremely high pressure in the deep sea, rigid vessels5-7 and pressure-compensation systems8-10 are typically required to protect mechatronic systems. However, deep-sea creatures that lack bulky or heavy pressure-tolerant systems can thrive at extreme depths11-17. Here, inspired by the structure of a deep-sea snailfish15, we develop an untethered soft robot for deep-sea exploration, with onboard power, control and actuation protected from pressure by integrating electronics in a silicone matrix. This self-powered robot eliminates the requirement for any rigid vessel. To reduce shear stress at the interfaces between electronic components, we decentralize the electronics by increasing the distance between components or separating them from the printed circuit board. Careful design of the dielectric elastomer material used for the robot's flapping fins allowed the robot to be actuated successfully in a field test in the Mariana Trench down to a depth of 10,900 metres and to swim freely in the South China Sea at a depth of 3,224 metres. We validate the pressure resilience of the electronic components and soft actuators through systematic experiments and theoretical analyses. Our work highlights the potential of designing soft, lightweight devices for use in extreme conditions.

17.
Adv Mater ; 33(11): e2006111, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33576145

ABSTRACT

Soft ionic conductors, such as hydrogels and ionogels, have enabled stretchable and transparent ionotronics, but they suffer from key limitations inherent to the liquid components, which may leak and evaporate. Here, novel liquid-free ionic conductive elastomers (ICE) that are copolymer networks hosting lithium cations and associated anions via lithium bonds and hydrogen bonds are demonstrated, such that they are intrinsically immune from leakage and evaporation. The ICEs show extraordinary mechanical versatility including excellent stretchability, high strength and toughness, self-healing, quick self-recovery, and 3D-printability. More intriguingly, the ICEs can defeat the conflict of strength versus toughness-a compromise well recognized in mechanics and material science-and simultaneously overcome the conflict between ionic conductivity and mechanical properties, which is common for ionogels. Several liquid-free ionotronics based on the ICE are further developed, including resistive force sensors, multifunctional ionic skins, and triboelectric nanogenerators (TENGs), which are not subject to limitations of previous gel-based devices, such as leakage, evaporation, and weak hydrogel-elastomer interfaces. Also, the 3D printability of the ICEs is demonstrated by printing a series of structures with fine features. The findings offer promise for a variety of ionotronics requiring environmental stability and durability.

18.
Soft Robot ; 8(3): 310-318, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32654595

ABSTRACT

Possessing the attributes of high adaptability and low cost, soft robotic individuals can further coordinate and form into a swarming system, enhancing the performances as well as functions in practical applications. However, the formation control of soft robotic swarm remains challenging mainly due to the limitation in relatively low precision and slow response of the soft actuators. In this work, a soft robotic fish swarm system with global vision positioning was studied. The soft robotic fish used in the project is driven by a hybrid power-control system, in which the soft dielectric elastomers and the rigid electrical servo provide forward propulsion and controllable steering function, respectively. Results show that soft robotic fish swarm can quickly shift their formations, mimicking three typical swarming behaviors of natural creatures: highly parallel group, encircling, and torus. The system design and controlling principles of the soft robotic fish swarm may guide the future research of soft robots and robotic swarms, specifically for underwater applications.


Subject(s)
Robotics , Animals , Elastomers , Fishes , Robotics/methods
19.
J Hematol Oncol ; 13(1): 128, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32977829

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a fatal hematopoietic malignancy and has a prognosis that varies with its genetic complexity. However, there has been no appropriate integrative analysis on the hierarchy of different AML subtypes. METHODS: Using Microwell-seq, a high-throughput single-cell mRNA sequencing platform, we analyzed the cellular hierarchy of bone marrow samples from 40 patients and 3 healthy donors. We also used single-cell single-molecule real-time (SMRT) sequencing to investigate the clonal heterogeneity of AML cells. RESULTS: From the integrative analysis of 191727 AML cells, we established a single-cell AML landscape and identified an AML progenitor cell cluster with novel AML markers. Patients with ribosomal protein high progenitor cells had a low remission rate. We deduced two types of AML with diverse clinical outcomes. We traced mitochondrial mutations in the AML landscape by combining Microwell-seq with SMRT sequencing. We propose the existence of a phenotypic "cancer attractor" that might help to define a common phenotype for AML progenitor cells. Finally, we explored the potential drug targets by making comparisons between the AML landscape and the Human Cell Landscape. CONCLUSIONS: We identified a key AML progenitor cell cluster. A high ribosomal protein gene level indicates the poor prognosis. We deduced two types of AML and explored the potential drug targets. Our results suggest the existence of a cancer attractor.


Subject(s)
Bone Marrow Examination/methods , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid, Acute/pathology , Single-Cell Analysis/methods , Cell Lineage , Clone Cells , Computer Systems , DNA, Mitochondrial/genetics , DNA, Neoplasm/genetics , Gene Expression Regulation, Leukemic , Gene Regulatory Networks , Humans , Leukemia, Monocytic, Acute/genetics , Leukemia, Monocytic, Acute/pathology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/genetics , Neoplastic Stem Cells/chemistry , Neoplastic Stem Cells/pathology , Phenotype , Prognosis , RNA, Messenger/analysis , RNA, Neoplasm/analysis , Recurrence , Ribosomal Proteins/genetics , Transcription Factors/physiology
20.
Nanoscale ; 12(14): 7514-7521, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32215396

ABSTRACT

Dielectric elastomers (DEs) are promising electroactive artificial muscles for use in soft machines. However, achieving anisotropy and sub-kV actuation voltage remains a great challenge for DE actuators. Herein, we report a facile method to fabricate ultrathin anisotropic DE films of an amorphous triblock copolymer poly(styrene-b-butyl acrylate-b-styrene) (SBAS) for soft actuators. The modulus of anisotropic SBAS in one direction can be modulated from 0.3 MPa to 10.5 MPa, and the modulus in the orthogonal direction remains the same as that of the pristine film (0.3 MPa). The anisotropy endows soft DE actuators with the directional-preferred response to an applied electric field and programmable multiple actuation morphs. These anisotropic SBAS films allowed us to fabricate compact soft robotics with high maneuverability, including soft grippers for object manipulation and crawling robots with reversible moving ability under an actuation voltage around 800 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...