Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Immunol Infect ; 55(5): 829-837, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34969624

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) causes substantial morbidity and mortality in adults worldwide. The etiology of CAP often remains uncertain, and therapy is empirical. Thus, there is still room for improvement in the diagnosis of pneumonia. METHODS: Adults aged >20 years who presented at the outpatient or emergency departments of Linkou and Keelung Chang Gung Memorial Hospital with CAP were prospectively included between November 2016 and December 2018. We collected respiratory specimens for culture and molecular testing and calculated the incidence rates of CAP according to pathogens. RESULTS: Of 212 hospitalized adult patients with CAP, 69.3% were male, and the median age of the patients was 67.8 years. Bacterial pathogens were detected in 106 (50%) patients, viruses in 77 (36.3%), and fungal pathogens in 1 patient (0.5%). The overall detection rate (culture and molecular testing method) was 70.7% (n = 150). Traditional microbial culture yielded positive results in 36.7% (n = 78), molecular testing in 61.3% (n = 130). The most common pathogens were influenza (16.1%), followed by Klebsiella pneumoniae (14.1%), Pseudomonas aeruginosa (13.6%), human rhinovirus (11.8%), and Streptococcus pneumoniae (9.9%). Multiple pathogen co-infections accounted for 28.7% (n = 61), of which co-infection with K. pneumoniae and human rhinovirus comprised the largest proportion. CONCLUSIONS: Molecular diagnostic testing could detect 23.6% more pathogens than traditional culture techniques. However, despite the current diagnostic tests, there is still the possibility that no pathogen was detected.


Subject(s)
Coinfection , Community-Acquired Infections , Pneumonia, Bacterial , Pneumonia , Viruses , Adult , Humans , Male , Aged , Female , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/microbiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/microbiology , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/microbiology , Viruses/genetics , Molecular Diagnostic Techniques/methods , Streptococcus pneumoniae , Coinfection/diagnosis , Coinfection/epidemiology , Klebsiella pneumoniae
2.
Emerg Infect Dis ; 28(1): 111-117, 2022 01.
Article in English | MEDLINE | ID: mdl-34932441

ABSTRACT

Genomic changes in Mycoplasma pneumoniae caused by adaptation to environmental or ecologic pressures are poorly understood. We collected M. pneumoniae from children who had confirmed pneumonia in Taiwan during 2017-2020. We used whole-genome sequencing to compare these isolates with a worldwide collection of current and historical clinical strains for characterizing population structures. A phylogenetic tree for 284 strains showed that all sequenced strains consisted of 5 clades: T1-1 (sequence type [ST]1), T1-2 (mainly ST3), T1-3 (ST17), T2-1 (mainly ST2), and T2-2 (mainly ST14). We identified a putative recombination block containing 6 genes (MPN366‒371). Macrolide resistance involving 23S rRNA mutations was detected for each clade. Clonal expansion of macrolide resistance occurred mostly within subtype 1 strains, of which clade T1-2 showed the highest recombination rate and genome diversity. Functional characterization of recombined regions provided clarification of the biologic role of these recombination events in the evolution of M. pneumoniae.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Anti-Bacterial Agents/pharmacology , Child , Drug Resistance, Bacterial/genetics , Humans , Macrolides , Mycoplasma pneumoniae/genetics , Phylogeny , Pneumonia, Mycoplasma/epidemiology , RNA, Ribosomal, 23S , Recombination, Genetic
3.
J Biomed Sci ; 28(1): 60, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34452635

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is a common cause of post-influenza secondary bacterial infection, which results in excessive morbidity and mortality. Although 13-valent pneumococcal conjugate vaccine (PCV13) vaccination programs have decreased the incidence of pneumococcal pneumonia, PCV13 failed to prevent serotype 3 pneumococcal disease as effectively as other vaccine serotypes. We aimed to investigate the mechanisms underlying the co-pathogenesis of influenza virus and serotype 3 pneumococci. METHODS: We carried out a genome-wide screening of a serotype 3 S. pneumoniae transposon insertion mutant library in a mouse model of coinfection with influenza A virus (IAV) to identify the bacterial factors required for this synergism. RESULTS: Direct, high-throughput sequencing of transposon insertion sites identified 24 genes required for both coinfection and bacterial infection alone. Targeted deletion of the putative aminotransferase (PA) gene decreased bacterial growth, which was restored by supplementation with methionine. The bacterial burden in a coinfection with the PA gene deletion mutant and IAV in the lung was lower than that in a coinfection with wild-type pneumococcus and IAV, but was significantly higher than that in an infection with the PA gene deletion mutant alone. These data suggest that IAV infection alters host metabolism to benefit pneumococcal fitness and confer higher susceptibility to pneumococcal infection. We further demonstrated that bacterial growth was increased by supplementation with methionine or IAV-infected mouse lung homogenates. CONCLUSIONS: The data indicates that modulation of host metabolism during IAV infection may serve as a potential therapeutic intervention against secondary bacterial infections caused by serotype 3 pneumococci during IAV outbreaks in the future.


Subject(s)
Coinfection , Influenza A virus/genetics , Orthomyxoviridae Infections/virology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/genetics , Transcriptome , Animals , Coinfection/microbiology , Coinfection/virology , Female , Genome, Bacterial , Mice , Mice, Inbred BALB C
4.
Clin Microbiol Infect ; 27(8): 1169.e1-1169.e6, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33010445

ABSTRACT

OBJECTIVES: Mycoplasma pneumoniae is currently the most commonly detected bacterial cause of childhood community-acquired pneumonia in several countries. Of note, clonal expansion of macrolide-resistant ST3 occurred in Japan and South Korea. An alarming surge in macrolide resistance complicates the treatment of pneumonia. We aimed to evaluate the clinical manifestation and clonal relatedness of M. pneumoniae circulating among children in Taiwan. METHODS: We prospectively enrolled 626 children with radiologically confirmed pneumonia between 2017 and 2019. An M. pneumoniae infection was suspected on clinical grounds, and tested by real-time PCR and oropharyngeal swab cultures. We used multilocus sequence typing and whole-genome sequencing to characterize the genetic features of M. pneumoniae. RESULTS: A total of 226 children with M. pneumoniae pneumonia were enrolled. Macrolide resistance was found in 77% (174/226) of patients. Multi-locus sequence typing revealed that ST3 (n = 93) and its single-locus variant ST17 (n = 84) were the predominant clones among macrolide-resistant strains. ST17 presented clinical characteristics comparable to its ancestor ST3. On multivariate analysis, macrolide resistance (OR 3.5; 95% CI 1.4-8.5; p 0.007) was independently associated with fever >72 hours after macrolide treatment. By whole-genome sequencing, prediction analysis of recombination sites revealed one recombination site in ST3 and ST17 compared with M29 (a macrolide-sensitive ST3 strain isolated from China in 2005) containing cytadhesin MgpC-like protein, RepMP4 and RepMP5. ST17 had another recombination site containing an adhesin and RepMP2/3. CONCLUSIONS: In addition to macrolide resistance, ST3 and its ST17 variant might evolve through recombination between repetitive sequences and non-P1 cytadhesins for persistent circulation in Taiwan.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Macrolides , Mycoplasma pneumoniae , Pneumonia, Mycoplasma/microbiology , Anti-Bacterial Agents/pharmacology , Child , Humans , Macrolides/pharmacology , Multilocus Sequence Typing , Mycoplasma pneumoniae/classification , Mycoplasma pneumoniae/drug effects , Pneumonia, Mycoplasma/epidemiology , Recombination, Genetic , Taiwan/epidemiology
5.
Emerg Infect Dis ; 26(4): 711-720, 2020 04.
Article in English | MEDLINE | ID: mdl-32186492

ABSTRACT

Incidence of invasive pneumococcal disease caused by antimicrobial-resistant Streptococcus pneumoniae types not included in pneumococcal conjugate vaccines has increased, including a penicillin- and meropenem-resistant serotype 15A-ST63 clone in Japan. During 2013-2017, we collected 206 invasive pneumococcal isolates in Taiwan for penicillin and meropenem susceptibility testing. We found serotypes 15B/C-ST83 and 15A-ST63 were the most prevalent penicillin- and meropenem-resistant clones. A transformation study confirmed that penicillin-binding protein (PBP) 2b was the primary meropenem resistance determinant, and PBP1a was essential for high-level resistance. The rate of serotype 15B/C-ST83 increased during the study. All 15B/C-ST83 isolates showed an ermB macrolide resistance genotype. Prediction analysis of recombination sites revealed 12 recombination regions in 15B/C-ST83 compared with the S. pneumoniae Spain23F-ST81 genome. Pneumococcal clones rapidly recombine to acquire survival advantages and undergo local expansion under the selective pressure exerted by vaccines and antimicrobial drugs. The spread of 15B/C-ST83 is alarming for countries with high antimicrobial pressure.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Genomics , Humans , Japan , Macrolides , Meropenem/pharmacology , Microbial Sensitivity Tests , Pneumococcal Infections/epidemiology , Serogroup , Serotyping , Spain , Streptococcus pneumoniae/genetics , Taiwan/epidemiology
6.
Front Microbiol ; 10: 205, 2019.
Article in English | MEDLINE | ID: mdl-30800118

ABSTRACT

Streptococcus pneumoniae 19A ST320, a multidrug-resistant strain with high disease severity that notoriously spread before the use of expanded pneumococcal conjugate vaccines, was derived from a capsular switching event between an international strain Taiwan 19F-14 (ST236) and a serotype 19A strain. However, the molecular mechanisms underlying the adaptive evolution of 19F ST236 to 19A ST320 are unknown. In this study, we compared 19A ST320 to its ancestral clone, 19F ST236, in terms of adherence to respiratory epithelial cells, whole transcriptome, and ability to colonize a young mouse model. Serotype 19A ST320 showed five-fold higher adherence to A549 cells than serotype 19F ST236. High-throughput mRNA sequencing identified a prophage region located between dnaN and ychF in both strains; however, the genes in this region were expressed at significantly higher levels in 19A ST320 than in 19F ST236. Analysis by polymerase chain reaction (PCR) showed that the prophage is able to spontaneously excise from the chromosome and form a circular episome in 19A ST320, but not in 19F ST236. Deletion of the integrase in the prophage of 19A ST320 decreased spontaneous excision and cell adherence, which were restored by complementation. Competition experiments in mice showed that the integrase mutant was six-fold less competitive than the 19A ST320 parent (competitive index [CI]: 0.16; p = 0.02). The 19A ST320 prophage-deleted strain did not change cell adherence capacity, whereas prophage integration strains (integrase mutant and 19F) had decreased expression of the down-stream ychF gene compared to that of 19A ST320. Further deletion of ychF significantly reduced cell adherence. In conclusions, these findings suggest that spontaneous prophage induction confers a competitive advantage to virulent pneumococci.

7.
Naunyn Schmiedebergs Arch Pharmacol ; 388(5): 539-48, 2015 May.
Article in English | MEDLINE | ID: mdl-25672911

ABSTRACT

Coronary heart disease remains a leading cause of death in the world. The demand on targeting therapy to reduce myocardial ischemia/reperfusion (I/R) injury is still urgent. The pathogenesis of I/R-induced myocardial injury is complicated. Reactive oxygen species (ROS) generation and inflammatory response activation participate in the development of I/R injury. Cell death occurs and finally leads to myocardial infarction. A newly phenolic aporphine alkaloid derivative, TM-1-1DP, was synthesized in our team. We aimed to investigate the effect of novel compound on myocardial I/R injury. Rats were subjected to 1-h coronary artery occlusion and followed by 2-h reperfusion. Adult rat cardimoycyte was isolated for the cell study, and H2O2 was added into culture medium to induce ROS stress. As compared to the sham group, TM-1-1DP-treated rats had better cardiac performance in association with less infarct size and cardiac injury markers after myocardial I/R. The protective effect is associated with the inhibition of inflammatory response, cell death-related pathway (caspase-3 and TNF-α), and the activation of AKT-eNOS pathway. The finding was further coincided with the cell study. TM-1-1DP treatment significantly alleviated ROS production and improved cell viability in cardiomyocyte after H2O2 exposure. The action of TM-1-1DP is via a nitric oxide (NO)-dependent manner, since NOS inhibitor, L-NAME, abolished the protective effect. We provide a new insight into this therapeutic potential for phenolic aporphine alkaloid in myocardial I/R.


Subject(s)
Aporphines/therapeutic use , Cardiotonic Agents/therapeutic use , Myocardial Reperfusion Injury/prevention & control , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Aporphines/administration & dosage , Aporphines/chemistry , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Heart Function Tests , Male , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...