Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Endosc Ultrasound ; 13(2): 65-75, 2024.
Article in English | MEDLINE | ID: mdl-38947752

ABSTRACT

Artificial intelligence (AI) is an epoch-making technology, among which the 2 most advanced parts are machine learning and deep learning algorithms that have been further developed by machine learning, and it has been partially applied to assist EUS diagnosis. AI-assisted EUS diagnosis has been reported to have great value in the diagnosis of pancreatic tumors and chronic pancreatitis, gastrointestinal stromal tumors, esophageal early cancer, biliary tract, and liver lesions. The application of AI in EUS diagnosis still has some urgent problems to be solved. First, the development of sensitive AI diagnostic tools requires a large amount of high-quality training data. Second, there is overfitting and bias in the current AI algorithms, leading to poor diagnostic reliability. Third, the value of AI still needs to be determined in prospective studies. Fourth, the ethical risks of AI need to be considered and avoided.

2.
Chin Med J (Engl) ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816396

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated. METHODS: We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (three each from CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. RESULTS: Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. CONCLUSIONS: Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.

4.
J Hazard Mater ; 467: 133631, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335610

ABSTRACT

Ubiquitous pollution due to microplastics through the food chain is a major cause of various deleterious effects on the human health. The aim of this study was to determine the existence of microplastics and the internal mechanism of microplastics as accelerators of cholelithiasis. Gallstones were collected from 16 patients after cholecystectomy, and microplastics in the gallstones were detected through laser direct infrared and pyrolysis gas chromatographymass spectrometry examinations. Mice model of gallstone were constructed with or without different diameters of microplastic (0.5, 5 and 50 µm). The affinity between microplastic and cholesterol or bilirubin was tested by co-culturing and qualified using molecular dynamics simulations. Finally, altered gut microbiota among the groups were identified using 16 s rRNA sequencing. The presence of microplastics in the gallstones of all the patients were confirmed. Microplastic content was significantly higher in younger chololithiasis patients (age<50 years). Mice fed a high-cholesterol diet with microplastic drinks showed more severe chololithiasis. In terms of the mechanism, microplastics showed a higher affinity for cholesterol than for bilirubin. Significant alterations in the gut microbiota have also been identified after microplastic intake in mice. Our study revealed the presence of microplastics in human gallstones, showcasing their potential to aggravate chololithiasis by forming large cholesterol-microplastic heteroaggregates and altering the gut microbiota.


Subject(s)
Gallstones , Humans , Animals , Mice , Middle Aged , Microplastics , Plastics , Cholesterol , Bilirubin
5.
Pest Manag Sci ; 80(6): 2587-2595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38265118

ABSTRACT

BACKGROUND: Cry1Ab has emerged as a bio-insecticide to control Spodoptera litura (Lepidoptera: Noctuidae). However, the sublethal effects of Cry1Ab on the physiological changes and molecular level of S. litura have not been well documented. Our aims in this study were to assess the sublethal effect of Cry1Ab on S. litura, including midgut and Malpighian tubules as targets. RESULTS: After sublethal Cry1Ab exposure, distinct histological alterations were mainly observed in the midgut. Furthermore, the results of comparative RNA sequencing and tandem mass tag-based proteomics showed that, in the midgut, most differential expression genes (DEGs) were up-regulated and significantly enriched in the serine protease activity pathway, and up-regulated differential expression proteins (DEPs) were mainly associated with the oxidative phosphorylation pathway, whereas the down-regulated involved in the ribosome pathways. In the Malpighian tubules, DEGs and DEPs were significantly enriched in the ribosome pathway. We proposed that ribosome may act as a universal target in energy metabolism with other pathways via the results of protein-protein interaction analysis. Further, by verification of the mRNA expression of some Cry protein receptor and detoxification genes after Cry1Ab treatment, it was suggested that the ribosomal proteins (RPs) possibly participate in influencing the Bt-resistance of S. litura larvae under sublethal Cry1Ab exposure. CONCLUSION: Under sublethal Cry1Ab exposure, the midgut of S. litura was damaged, and the proteotranscriptomic analysis elucidated that Cry1Ab disrupted the energy homeostasis of larvae. Furthermore, we emphasized the potential role of ribosomes in sublethal Cry1Ab exposure. © 2024 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis Toxins , Endotoxins , Hemolysin Proteins , Larva , Malpighian Tubules , Spodoptera , Animals , Spodoptera/drug effects , Spodoptera/genetics , Spodoptera/metabolism , Spodoptera/growth & development , Malpighian Tubules/drug effects , Malpighian Tubules/metabolism , Larva/drug effects , Larva/genetics , Larva/growth & development , Larva/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Transcriptome , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Insecticides/toxicity , Proteome , Proteomics , Digestive System/drug effects , Digestive System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL