Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Small ; 20(24): e2308304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308419

ABSTRACT

Lithium-ion batteries (LIBs) has been developed over the last three decades. Increased amount of silicon (Si) is added into graphite anode to increase the energy density of LIBs. However, the amount of Si is limited, due to its structural instability and poor electronic conductivity so a novel approach is needed to overcome these issues. In this work, the synthesized chromium silicide (CrSi2) doped Si nanoparticle anode material achieves an initial capacity of 1729.3 mAh g-1 at 0.2C and retains 1085 mAh g-1 after 500 cycles. The new anode also shows fast charge capability due to the enhanced electronic conductivity provided by CrSi2 dopant, delivering a capacity of 815.9 mAh g-1 at 1C after 1000 cycles with a capacity degradation rate of <0.05% per cycle. An in situ transmission electron microscopy is used to study the structural stability of the CrSi2-doped Si, indicating that the high control of CrSi2 dopant prevents the fracture of Si during lithiation and results in long cycle life. Molecular dynamics simulation shows that CrSi2 doping optimizes the crack propagation path and dissipates the fracture energy. In this work a comprehensive information is provided to study the function of metal ion doping in electrode materials.

2.
ACS Appl Mater Interfaces ; 15(19): 22977-22984, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37145038

ABSTRACT

The principal hallmark of Alzheimer's disease (AD) is neuron mitochondrial dysfunction, whereas mitochondrial miRNAs potentially play important roles. Nevertheless, efficacious mitochondria organelle therapeutic agents for treatment and management of AD are highly advisable. Herein, we report a multifunctional DNA tetrahedron-based mitochondria-targeted therapeutic platform, termed tetrahedral DNA framework-based nanoparticles (TDFNs), which was modified with triphenylphosphine (TPP) for mitochondria-targeting, cholesterol (Chol) for crossing the central nervous system, and functional antisense oligonucleotide (ASO) for both AD diagnosis and gene silencing therapy. After injecting intravenously through the tail vein of 3 × Tg-AD model mice, TDFNs can both easily cross the blood brain barrier and accurately arrive at the mitochondria. The functional ASO could not only be detected via the fluorescence signal for diagnosis but also mediate the apoptosis pathway through knocking miRNA-34a down, leading to recovery of the neuron cells. The superior performance of TDFNs suggests the great potential in mitochondria organelle therapeutics.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Neurons/metabolism , DNA, Mitochondrial/metabolism
3.
Adv Healthc Mater ; 12(20): e2202986, 2023 08.
Article in English | MEDLINE | ID: mdl-36943933

ABSTRACT

Mitochondria-targeted therapeutics are an attractive approach against energy-dependent cancer. However, effective mitochondria organelle therapeutics agents are still highly desirable. Herein, a mitochondria-targeted therapeutics platform, termed CDM@MUiO-DP@MCHM, consisting of macrophages-cancer hybrid membrane (MCHM) encapsulated MUiO-66 metal-organic frameworks (MOFs) is reported, which is loaded with microRNA (miRNA) biomarker detection probe (DP) for cancer diagnosis and copper-depleting moiety (CDM) for mitochondrial copper depletion to suppress cancer growth. Using nude mice bearing MCF-7 as model, after injecting intravenously via the caudal vein of mice, the encapsulation of MCHM can not only greatly enhance the cancer homing-targeting ability of the nanoparticles (NPs) but also endows the NPs the immune escape capacity to extend the circulation time. The miRNA-21 biomarker can be detected by the fluorescence signal for diagnosis, while the CDM induced energy deficiency and compromised mitochondria membrane potential, leading to apoptosis of the cancer cell. The good performance of CDM@MUiO-DP@MCHM suggest the great potential mitochondria organelle therapeutics.


Subject(s)
Metal-Organic Frameworks , MicroRNAs , Nanoparticles , Neoplasms , Animals , Mice , Copper/pharmacology , Mice, Nude , Neoplasms/drug therapy , Mitochondria , MicroRNAs/pharmacology
4.
ACS Appl Mater Interfaces ; 15(13): 16714-16722, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36961995

ABSTRACT

Selective oxidation reactions are an important class of the current chemical industry and will be highly important for future sustainable chemical production. Especially, the selective oxidation of primary alcohols is expected to be of high future interest, as alcohols can be obtained on technical scales from biomass fermentation. The oxidation of primary alcohols produces aldehydes, which are important intermediates. While selective methanol oxidation is industrially established, the commercial catalyst suffers from deactivation. Ethanol selective oxidation is not commercialized but would give access to sustainable acetaldehyde production when using renewable ethanol. In this work, it is shown that employing 2D MXenes as building blocks allows one to design a nanostructured oxide catalyst composed of mixed valence vanadium oxides, which outperforms on both reactions known materials by nearly an order of magnitude in activity, while showing high selectivity and stability. The study shows that the synthesis route employing 2D materials is key to obtain these attractive catalysts. V4C3Tx MXene structured as an aerogel precursor needs to be employed and mildly oxidized in an alcohol and oxygen atmosphere to result in the aspired nanostructured catalyst composed of mixed valence VO2, V6O13, and V3O7. Very likely, the bulk stable reduced valence state of the material together coupled with the nanorod arrangement allows for unprecedented oxygen mobility as well as active sites and results in an ultra-active catalyst.

5.
J Med Chem ; 66(1): 345-370, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36529947

ABSTRACT

CD73 (ecto-5'-nucleotidase) has emerged as an attractive target for cancer immunotherapy of many cancers. CD73 catalyzes the hydrolysis of adenosine monophosphate (AMP) into highly immunosuppressive adenosine that plays a critical role in tumor progression. Herein, we report our efforts in developing orally bioavailable and highly potent small-molecule CD73 inhibitors from the reported hit molecule 2 to lead molecule 20 and then finally to compound 49. Compound 49 was able to reverse AMP-mediated suppression of CD8+ T cells and completely inhibited CD73 activity in serum samples from various cancer patients. In preclinical in vivo studies, orally administered 49 showed a robust dose-dependent pharmacokinetic/pharmacodynamic (PK/PD) relationship that correlated with efficacy. Compound 49 also demonstrated the expected immune-mediated antitumor mechanism of action and was efficacious upon oral administration not only as a single agent but also in combination with either chemotherapeutics or checkpoint inhibitor in the mouse tumor model.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Nucleosides , 5'-Nucleotidase , Neoplasms/drug therapy , Disease Models, Animal , Adenosine Monophosphate
6.
ACS Energy Lett ; 7(10): 3524-3530, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36277132

ABSTRACT

High-capacity Ni-rich layered metal oxide cathodes are highly desirable to increase the energy density of lithium-ion batteries. However, these materials suffer from poor cycling performance, which is exacerbated by increased cell voltage. We demonstrate here the detrimental effect of ethylene carbonate (EC), a core component in conventional electrolytes, when NMC811 (LiNi0.8Mn0.1Co0.1O2) is charged above 4.4 V vs Li/Li+-the onset potential for lattice oxygen release. Oxygen loss is enhanced by EC-containing electrolytes-compared to EC-free-and correlates with more electrolyte oxidation/breakdown and cathode surface degradation, which increase concurrently above 4.4 V. In contrast, NMC111 (LiNi0.33Mn0.33Co0.33O2), which does not release oxygen up to 4.6 V, shows a similar extent of degradation irrespective of the electrolyte. This work highlights the incompatibility between conventional EC-based electrolytes and Ni-rich cathodes (more generally, cathodes that release lattice oxygen such as Li-/Mn-rich and disordered rocksalt cathodes) and motivates further work on wider classes of electrolytes and additives.

7.
ACS Appl Mater Interfaces ; 14(26): 29599-29612, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35737456

ABSTRACT

Aggregation-induced emission (AIE)-active luminogens (AIEgens) have demonstrated exciting potential for the application in cancer phototheranostics. However, simultaneously achieving tumor-activated bright emission, enhanced reactive oxygen species (ROS) generation, high tumor accumulation, and minimized ROS depletion remains challenging. Here, a metal-organic framework (MOF) hybrid AIEgen theranostic platform is designed, termed A-NUiO@DCDA@ZIF-Cu, composed of an AIEgen-loaded hydrophobic UiO-66 (A-NUiO@DCDA) core and a Cu-doped hydrophilic ZIF-8 (ZIF-Cu) shell. The fluorescence emission and therapeutic ROS activity of AIEgens are restrained during delivery. After uptake by tumor tissues, ZIF-Cu decomposition occurs in response to an acidic tumor microenvironment (TME), and the hydrophobic A-NUiO@DCDA cores self-assemble into large particles, extremely increasing the tumor accumulation of AIEgens. This results in enhanced fluorescence imaging (FLI) and highly improved 1O2 generation ability during photodynamic therapy (PDT). Meanwhile, the released Cu2+ reacts to glutathione (GSH) to generate Cu+, which provides an extra chemodynamic therapy (CDT) function through Fenton-like reactions with overexpressed H2O2, resulting in the GSH depletion-enhanced ROS therapy. As a result of these characteristics, the MOF hybrid AIEgens can selectively kill tumors with excellent efficacy.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Photochemotherapy , Cell Line, Tumor , Glutathione , Humans , Hydrogen Peroxide , Metal-Organic Frameworks/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Phthalic Acids , Reactive Oxygen Species , Tumor Microenvironment
8.
ACS Appl Mater Interfaces ; 14(11): 13206-13222, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35258927

ABSTRACT

The chemical and electrochemical reactions at the positive electrode-electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.

9.
Biotechnol Appl Biochem ; 69(4): 1482-1488, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34245190

ABSTRACT

In the present study, we report the complete genome sequencing of Haloterrigena daqingensis species. The genome of H. daqingensis JX313T consisted of a circular chromosome with three plasmids. The genome size and G+C content were estimated to be 3835796 bp and 61.7%, respectively. A total of 4158 genes were predicted with six rRNAs and 45 tRNAs. Metabolic pathway analysis suggests that H. daqingensis JX313T codes for all the necessary genes responsible to sustain its life at saline environment. The pan-genome analysis suggests that the number of singleton-gene between H. daqingensis and other Haloterrigena species varied. The study not only helps us understand H. daqingensis strategy for dealing with high stress, but it also provides an overview of its genomic makeup.


Subject(s)
Halobacteriaceae , DNA, Archaeal/genetics , Halobacteriaceae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Whole Genome Sequencing
10.
J Vis Exp ; (178)2021 12 06.
Article in English | MEDLINE | ID: mdl-34927608

ABSTRACT

A method for facile synthesis of nanostructured catalysts supported on carbon nanotubes with atomically dispersed cobalt and nitrogen dopant is presented herein. The novel strategy is based on a facile one-pot pyrolysis treatment of cobalt (II) acetylacetonate and nitrogen-rich organic precursors under Ar atmosphere at 800 °C, resulting in the formation of Co- and N- co-doped carbon nanotube with earthworm-like morphology. The obtained catalyst was found to have a high density of defect sites, as confirmed by Raman spectroscopy. Here, cobalt (II) nanoparticles were stabilized on the atomically dispersed cobalt- and nitrogen-doped carbon nanotubes. The catalyst was confirmed to be effective in the catalytic hydrolysis of ammonia borane, in which the turnover frequency was 5.87 mol H2·molCo-1·min-1, and the specific hydrogen generation rate was determined to be 2447 mL H2·gCo-1·min-1. A synergistic function between the Co nanoparticle and the doped carbon nanotubes was proposed for the first time in the catalytic hydrolysis of ammonia borane reaction under a mild condition. The resulting hydrogen production with its high energy density and minimal refueling time could be suitable for future development as energy sources for mobile and stationary applications such as road trucks and forklifts in transport and logistics.

11.
PLoS One ; 16(11): e0259241, 2021.
Article in English | MEDLINE | ID: mdl-34731180

ABSTRACT

Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine into the TCA cycle. We found that RCC cells are highly dependent on glutamine for proliferation, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption, which was concomitant with a decrease in the production of glutamate and other glutamine-derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL inhibitor) in combination with telaglenastat resulted in decreased consumption of both glucose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced tumor growth compared to either agent alone. Enhanced anti-tumor activity was also observed with the combination of everolimus plus telaglenastat. Collectively, our results demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose and glutamine consumption.


Subject(s)
Anilides/administration & dosage , Benzeneacetamides/administration & dosage , Carcinoma, Renal Cell/drug therapy , Everolimus/administration & dosage , Kidney Neoplasms/drug therapy , Pyridines/administration & dosage , Thiadiazoles/administration & dosage , Anilides/pharmacology , Animals , Benzeneacetamides/pharmacology , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Everolimus/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Glucose/metabolism , Glutaminase/antagonists & inhibitors , Glutamine/metabolism , Humans , Kidney Neoplasms/metabolism , Mice , Pyridines/pharmacology , Signal Transduction/drug effects , Thiadiazoles/pharmacology , Xenograft Model Antitumor Assays
12.
Zhongguo Zhong Yao Za Zhi ; 46(3): 635-637, 2021 Feb.
Article in Chinese | MEDLINE | ID: mdl-33645030

ABSTRACT

Three compounds, including scolosprine C(1), uracil(2) and hypoxanthine(3), were isolated and purified from the ethyl acetate fraction of centipede by silica gel normal-phase column chromatography, reversed-phase medium pressure preparation chromatography, and high-pressure semi-preparative HPLC. The structure was elucidated through a combination of spectroscopic analyses [such as nuclear magnetic resonance(NMR) and mass spectrometry(MS)] and literature review. Among them, compound 1 was a new quinoline alkaloid. In previous reports, we have described the isolation and structure elucidation of one new and two known quinoline alkaloids. In this paper, we would report the isolation and structure elucidation of scolosprine C in detail.


Subject(s)
Alkaloids , Arthropods , Quinolines , Animals , Chilopoda
13.
RSC Adv ; 10(38): 22775-22782, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-35514599

ABSTRACT

Cycling performance is very important to device application. Herein, a facile and controllable approach is proposed to synthesize high stability CuCo2O4 nanoneedle array on a conductive substrate. The electrode presents excellent performances in a large specific capacitance up to 2.62 F cm-2 (1747 F g-1) at 1 mV s-1 and remarkable electrochemical stability, retaining 164% even over 70 000 cycles. In addition, the asymmetric supercapacitor assembled with the optimized CuCo2O4 nanoneedle array (cathode) and active carbon (anode), which exhibits superior specific capacity (146 F g-1), energy density (57 W h kg-1), and cycling stability (retention of 83.9% after 10 000 cycles). These outstanding performances are mainly ascribed to the ordered binder-free nanoneedle array architecture and holds great potential for the new-generation energy storage devices.

14.
Sci Rep ; 9(1): 2896, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30814608

ABSTRACT

Avian coccidiosis is an economically important disease in the poultry industry. In view of the disadvantages of anti-coccidial drugs in chickens, edible plants and their compounds are re-emerging as an alternative strategy to combat this disease. A previous publication reported that the edible plant B. pilosa showed promise for use against coccidiosis. Here, we first investigated into the anti-coccidial effects of B. pilosa. We found that B. pilosa at 100 ppm or more significantly suppressed E. tenella as evidenced by reduction in mortality rate, oocyst excretion and gut pathological severity in chickens and its minimum prophylactic duration was 3 days. Next, we explored the mode of action of anti-coccidial mechanism of B. pilosa. The E. tenella oocysts were not directly killed by B. pilosa; however, administration of the plant suppressed oocyst sporulation, sporozoite invasion, and schizonts in the life cycle of E. tenella. Besides, B. pilosa boosted T cell-mediated immunity. Finally, we characterized the related anti-coccidial phytochemicals and their mode of action. One of three potent polyynes present in B. pilsoa, Compound 1 (cytopiloyne), acted against coccidiosis in chickens in a similar manner to B. pilosa. These data illustrate the anti-coccidial potency and mechanism of B. pilosa and one of its active compounds, and provide a cornerstone for development of novel herbal remedies for avian coccidiosis.


Subject(s)
Bidens/chemistry , Chickens/immunology , Coccidiosis/drug therapy , Coccidiosis/veterinary , Eimeria tenella/drug effects , Plant Extracts/pharmacology , Poultry Diseases/prevention & control , Animals , Chickens/growth & development , Chickens/parasitology , Coccidiosis/parasitology , Eimeria tenella/immunology , Female , Oocysts/drug effects , Poultry Diseases/parasitology
15.
Front Microbiol ; 10: 2902, 2019.
Article in English | MEDLINE | ID: mdl-32010065

ABSTRACT

Songnen Plain is originally one of the three major glasslands in China and has now become one of the three most concentrated distribution areas of sodic-saline soil worldwide. The soil is continuously degraded by natural and anthropogenic processes, which has a negative impact on agricultural production. The investigation of microbial diversity in this degraded ecosystem is fundamental for comprehending biological and ecological processes and harnessing the potential of microbial resources. The Illumina MiSeq sequencing method was practiced to investigate the bacterial diversity and composition in saline-alkali soil. The results from this study show that the change in pH under alkaline conditions was not the major contributor in shaping bacterial community in Songnen Plain. The electrical conductivity (EC) content of soil was the most important driving force for bacterial composition (20.83%), and the second most influencing factor was Na+ content (14.17%). Bacterial communities were clearly separated in accordance with the EC. The dominant bacterial groups were Planctomycetes, Proteobacteria, and Bacteroidetes among the different salinity soil. As the salt concentration increased, the indicators changed from Planctomycetes and Bacteroidetes to Proteobacteria and Firmicutes. Our results suggest that Proteobacteria and Firmicutes were the main indicator species reflecting changes of the main microbial groups and the EC as a key factor drives the composition of the bacterial community under alkaline conditions in saline-alkali soil of Songnen Plain.

16.
J Immunother Cancer ; 5(1): 101, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29254508

ABSTRACT

BACKGROUND: Myeloid cells are an abundant leukocyte in many types of tumors and contribute to immune evasion. Expression of the enzyme arginase 1 (Arg1) is a defining feature of immunosuppressive myeloid cells and leads to depletion of L-arginine, a nutrient required for T cell and natural killer (NK) cell proliferation. Here we use CB-1158, a potent and orally-bioavailable small-molecule inhibitor of arginase, to investigate the role of Arg1 in regulating anti-tumor immunity. METHODS: CB-1158 was tested for the ability to block myeloid cell-mediated inhibition of T cell proliferation in vitro, and for tumor growth inhibition in syngeneic mouse models of cancer as a single agent and in combination with other therapies. Tumors from animals treated with CB-1158 were profiled for changes in immune cell subsets, expression of immune-related genes, and cytokines. Human tumor tissue microarrays were probed for Arg1 expression by immunohistochemistry and immunofluorescence. Cancer patient plasma samples were assessed for Arg1 protein and L-arginine by ELISA and mass spectrometry, respectively. RESULTS: CB-1158 blocked myeloid cell-mediated suppression of T cell proliferation in vitro and reduced tumor growth in multiple mouse models of cancer, as a single agent and in combination with checkpoint blockade, adoptive T cell therapy, adoptive NK cell therapy, and the chemotherapy agent gemcitabine. Profiling of the tumor microenvironment revealed that CB-1158 increased tumor-infiltrating CD8+ T cells and NK cells, inflammatory cytokines, and expression of interferon-inducible genes. Patient tumor samples from multiple histologies expressed an abundance of tumor-infiltrating Arg1+ myeloid cells. Plasma samples from cancer patients exhibited elevated Arg1 and reduced L-arginine compared to healthy volunteers. CONCLUSIONS: These results demonstrate that Arg1 is a key mediator of immune suppression and that inhibiting Arg1 with CB-1158 shifts the immune landscape toward a pro-inflammatory environment, blunting myeloid cell-mediated immune evasion and reducing tumor growth. Furthermore, our results suggest that arginase blockade by CB-1158 may be an effective therapy in multiple types of cancer and combining CB-1158 with standard-of-care chemotherapy or other immunotherapies may yield improved clinical responses.


Subject(s)
Arginase/metabolism , Myeloid Cells/cytology , Neoplasms/drug therapy , Pyrrolidines/administration & dosage , Small Molecule Libraries/administration & dosage , Tumor Microenvironment/drug effects , Animals , Arginase/antagonists & inhibitors , Arginine/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Hep G2 Cells , Humans , K562 Cells , Male , Mice , Myeloid Cells/drug effects , Myeloid Cells/enzymology , Neoplasms/immunology , Neoplasms/metabolism , Pyrrolidines/pharmacology , Small Molecule Libraries/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Up-Regulation , Xenograft Model Antitumor Assays
17.
Bioorg Med Chem Lett ; 27(16): 3766-3771, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28711351

ABSTRACT

Axl tyrosine kinase has been shown to be involved in multiple pathways contributing to tumor development, angiogenesis, and metastasis. High Axl expression has been observed in many human tumors where it appears to confer aggressive tumor behavior. Here we present several series of dual Axl-VEGF-R2 kinase inhibitors based on extensive optimization of an acyl diaminotriazole. It was hypothesized that dual inhibition of these two receptor tyrosine kinases may have a synergistic affect in inhibiting tumor angiogenesis and metastasis. One of these molecules, R916562 showed comparable activity to Sunitinib in two mouse tumor xenograft models and a mouse corneal micropocket model.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins/metabolism , Rats , Rats, Sprague-Dawley , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism , Axl Receptor Tyrosine Kinase
18.
Oncotarget ; 7(48): 79722-79735, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27806325

ABSTRACT

Metabolic reprogramming has been described as a hallmark of transformed cancer cells. In this study, we examined the role of the glutamine (Gln) utilization pathway in acute myeloid leukemia (AML) cell lines and primary AML samples. Our results indicate that a subset of AML cell lines is sensitive to Gln deprivation. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes the conversion of Gln to glutamate. One of the two GLS isoenzymes, GLS1 is highly expressed in cancer and encodes two different isoforms: kidney (KGA) and glutaminase C (GAC). We analyzed mRNA expression of GLS1 splicing variants, GAC and KGA, in several large AML datasets and identified increased levels of expression in AML patients with complex cytogenetics and within specific molecular subsets. Inhibition of glutaminase by allosteric GLS inhibitor bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide or by novel, potent, orally bioavailable GLS inhibitor CB-839 reduced intracellular glutamate levels and inhibited growth of AML cells. In cell lines and patient samples harboring IDH1/IDH2 (Isocitrate dehydrogenase 1 and 2) mutations, CB-839 reduced production of oncometabolite 2-hydroxyglutarate, inducing differentiation. These findings indicate potential utility of glutaminase inhibitors in AML therapy, which can inhibit cell growth, induce apoptosis and/or differentiation in specific leukemia subtypes.


Subject(s)
Antineoplastic Agents/pharmacology , Benzeneacetamides/pharmacology , Energy Metabolism/drug effects , Enzyme Inhibitors/pharmacology , Glutaminase/antagonists & inhibitors , Glutamine/metabolism , Leukemia, Myeloid, Acute/drug therapy , Sulfides/pharmacology , Thiadiazoles/pharmacology , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Glutamate Dehydrogenase/antagonists & inhibitors , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Glutamic Acid/metabolism , Glutaminase/genetics , Glutaminase/metabolism , Glutarates/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , Protein Isoforms
19.
Oncotarget ; 7(35): 56107-56119, 2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27528231

ABSTRACT

Decreased expression of NKG2D ligands on HBV-infected human hepatoma cells impairs NK cells lysis. However, which components of HBV exert this effect and the precise mechanisms need to be further investigated. In the present study, we observed that the HBx and HBc genes significantly down-regulated MICA expression. Through analysis with the chromatin immunoprecipitation assay, we found that HBV infection promotes the expression of transcription factors GATA-2 and GATA-3, which specifically suppressed MICA/B expression by directly binding to the promoter region of MICA/B. HBx protein, acting as a co-regulator, forms a tripolymer with GATA2 and GATA3, thus promotes the GATA-2 or GATA-3-mediated of MICA/B suppression. HBc protein inhibits MICA/B expression via directly binding to the CpG island in the MICA/B promoter. Thus, our study identified the novel role of transcription factors GATA-2 and GATA-3 in suppressing MICA/B expression and clarified the mechanisms of HBx and HBc in downregulation of MICA/B expression. These findings provide novel mechanisms for the contribution of HBV to hepatoma cells escape from NK cell surveillance.


Subject(s)
GATA2 Transcription Factor/metabolism , GATA3 Transcription Factor/metabolism , Hepatitis B virus/immunology , Histocompatibility Antigens Class I/metabolism , Immunologic Surveillance , Killer Cells, Natural/immunology , Carcinoma, Hepatocellular/immunology , Chromatin Immunoprecipitation , CpG Islands/genetics , Down-Regulation , Flow Cytometry , Hep G2 Cells , Hepatitis B virus/genetics , Histocompatibility Antigens Class I/genetics , Humans , Killer Cells, Natural/metabolism , Liver Neoplasms/immunology , Promoter Regions, Genetic/genetics , Protein Multimerization , Trans-Activators/immunology , Trans-Activators/metabolism , Transfection , Tumor Escape/immunology , Up-Regulation , Viral Regulatory and Accessory Proteins
20.
Nanoscale ; 8(9): 5254-9, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26878967

ABSTRACT

Previous studies on silicon (Si) indicate that lithiation-induced fracture of crystalline Si nanoparticles can be greatly inhibited if their diameter is reduced to below a critical scale of around 150 nm. In this paper, in situ lithiation of individual carbon-coated Si nanoparticles (Si@C NPs) is conducted which shows that Si@C NPs will fracture during lithiation even though their diameter is much smaller than 150 nm, implying a deleterious effect of the carbon coating on the integrity of the Si@C NPs during lithiation. To shed light on this effect, finite element analysis is carried out which reveals that the carbon coating, if fractured during lithiation, will induce cracks terminating at the C/Si interface. Such cracks, upon further lithiation, can immediately propagate into the Si core due to the elevated driving force caused by material inhomogeneity between the coating and core. To prevent the fracture of the carbon coating so as to protect the Si core, a design guideline is proposed by controlling the ratio between the diameter of Si core and the thickness of carbon coating. The results in this paper should be of practical value to the design and application of Si-based core-shell structured anode materials for lithium ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...