Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Oncogene ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773262

ABSTRACT

Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.

2.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732247

ABSTRACT

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Photosynthesis , Plant Proteins , Sugars , Vitis , Vitis/genetics , Vitis/metabolism , Vitis/radiation effects , Fruit/genetics , Fruit/metabolism , Fruit/radiation effects , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sugars/metabolism , Light
3.
Mater Horiz ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748488

ABSTRACT

The emergence of flexible fabric-based pneumatic actuators (FPAs) with pre-programmable motion capabilities, enhanced security and versatile interaction features significantly advances the construction of sophisticated soft robotic systems, owing to their enhanced security and versatile interaction features. Despite these promising attributes, the commercial viability of FPA products faces a considerable amount of challenges, primarily stemming from the scarcity of highly deformable fabric structures and the availability of industrial fabrication approaches. Taking inspiration from the anisotropic nature of lobster antennae, we propose a scalable and economical strategy to fabricate functional FPAs using nonwoven fabric material with superior mechanical anisotropy. This innovative method involves the adoption of tunable inelastic constrained wires sewn onto extensible nonwoven fabrics with regular wrinkles. This nonwoven fabric-based pneumatic actuator (NFPA) demonstrates specific motion profiles with curvature of over 0.6 cm-1 and output forces of over 140 cN under adjustable pressure conditions. Guided by the constrained wire combinations, NFPA enables diverse programmable motions like spiraling, assistance, and grasping. Furthermore, NFPA incorporated with specific sensors exhibits significant potential in wearable devices with real-time environmental detection for rehabilitation applications. Our work contributes a distinctive insight into the design of programmable NFPAs and enlightens an arena toward versatile soft robotic applications.

4.
Hortic Res ; 11(5): uhae072, 2024 May.
Article in English | MEDLINE | ID: mdl-38725457

ABSTRACT

Nitrogen (N) is regarded as an essential macronutrient and is tightly associated with carbon (C) metabolism in plants. The transcriptome data obtained from this study showed that the expression level of the apple basic leucine zipper (bZIP) transcription factor (TF) MdbZIP44 was up-regulated in 'Oregon Spur Delicious' (Malus domestica Borkh.) apple fruits under nitrogen supply. MdbZIP44 bound to the promoter of Mdα-GP2 gene and inhibited its expression, thereby promoting starch accumulation and decreasing glucose content in apple and tomato fruits. Besides, overexpression of MdbZIP44 promoted sucrose accumulation by regulating the activities of sucrose metabolism-related enzymes and the expression of sugar metabolism-related genes in apple callus and tomato fruits. Furthermore, biochemical assays indicated that MdbZIP44 directly interacted with MdCPRF2-like, another bZIP gene in apple. Meanwhile, this study found that MdCPRF2-like, along with the MdbZIP44 and MdCPRF2-like complex, could activate the expression of Mdα-GP2, respectively. In conclusion, this study provides a new reference for potential mechanisms underlying that MdbZIP44-MdCPRF2-like-Mdα-GP2 regulates starch and sugar metabolism under nitrogen supply.

5.
Front Oncol ; 14: 1372710, 2024.
Article in English | MEDLINE | ID: mdl-38706594

ABSTRACT

Background: Phyllodes tumors (PTs), which account for less than 1% of mammary gland tumors, composed of both epithelial and stromal components. If a malignant heterologous component is encountered, PT is considered malignant. Malignant phyllodes tumors (MPTs) only account for 8% to 20% of PTs. We report a case of MPT with osteosarcoma and chondrosarcoma differentiation and review the literature to discuss the differential diagnosis and therapy. Case presentation: A 59-year-old Chinese woman come to our hospital because of a palpable mass she had had for 1 months in the left breast. Preoperative core needle biopsy (CNB) was performed on the left breast mass on January 11, 2023. Pathological diagnosis was malignant tumor, the specific type was not clear. Mastectomy and sentinel lymph node biopsy of the left breast was performed. No metastasis was found in 3 sentinel lymph nodes identified by carbon nanoparticles and methylene blue double staining. Heterologous osteosarcoma and chondrosarcomatous differentiation of phyllodes tumor were observed. Immunohistochemistry: spindle tumor cells ER(-), PR(-), HER-2(-), CK-pan(-), CK7(-), CK8(-), SOX10(-), S100(-), and MDM2(-), CK5/6(-), P63(-), P40(-) were all negative. CD34:(+), SATB2(+), P53(90% strong), CD68 (+), Ki-67(LI: about 60%). No ductal carcinoma in situ was found in the breast. Fluorescence in situ hybridization (FISH) indicated USP6 was negatively expressed on formalin-fixed, paraffin-embedded (FFPE) tissue sections. Conclusion: MPTs are rare, and heterologous differentiation in MPTs is exceedingly rare. It could be diagnosed by pathology when metaplastic carcinoma, primary osteosarcoma, or myositis ossificans were excluded. This case could help clinicians to improve the prognosis and treatment of this disease.

6.
Int Immunopharmacol ; 132: 111970, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608472

ABSTRACT

OBJECTIVES: As antibiotics become more prevalent, accuracy and safety are critical. Moxifloxacin (MXF) have been reported to have immunomodulatory effects on a variety of immune cells and even anti-proliferative and pro-apoptotic effects, but the mechanism of action is not fully clear. METHODS: Peripheral blood mononuclear cells (PBMC) from experimental groups of healthy adults (n = 3) were treated with MXF (10ug/ml) in vitro for 24 h. Single-cell sequencing was performed to investigate differences in the response of each immune cell to MXF. Flow cytometry determined differential gene expression in subsets of most damaged NK cells. Pseudo-time analysis identified drivers that influence MXF-stimulated cell differentiation. Detection of mitochondrial DNA and its involvement in the mitochondrial respiratory chain pathway clarifies the origin of MXF-induced stress injury. RESULTS: Moxifloxacin-environmental NK cells are markedly reduced: a new subset of NK cells emerges, and immediate-early-response genes in this subset indicate the presence of an early activation response. The inhibitory receptor-dominant subset shows enhanced activation, leading to increased expression of cytokines and chemokines. The near-mature subset showed greater cytotoxicity and the most pronounced cellular damage. CD56bright cells responded by antagonizing the regulation of activation and inhibitory signals, demonstrating a strong cleavage capacity. The severe depletion of mitochondrial genes was focused on apoptosis induced by the mitochondrial respiratory chain complex. CONCLUSION: NK cells exhibit heightened sensitivity to the MXF environment. Different NK subsets upregulate the expression of cytokines and chemokines through different activation pathways. Concurrently, MXF induces impairment of the mitochondrial oxidative phosphorylation system, culminating in apoptosis.


Subject(s)
Apoptosis , DNA, Mitochondrial , Killer Cells, Natural , Moxifloxacin , Moxifloxacin/pharmacology , Humans , Apoptosis/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Adult , Cells, Cultured , Cytokines/metabolism , Anti-Bacterial Agents/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Mitochondria/drug effects , Mitochondria/metabolism , Male
7.
Adv Sci (Weinh) ; : e2308690, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682484

ABSTRACT

Spindle assembly checkpoint (SAC) is a crucial safeguard mechanism of mitosis fidelity that ensures equal division of duplicated chromosomes to the two progeny cells. Impaired SAC can lead to chromosomal instability (CIN), a well-recognized hallmark of cancer that facilitates tumor progression; paradoxically, high CIN levels are associated with better therapeutic response and prognosis. However, the mechanism by which CIN determines tumor cell survival and therapeutic response remains poorly understood. Here, using a cross-omics approach, YY2 is identified as a mitotic regulator that promotes SAC activity by activating the transcription of budding uninhibited by benzimidazole 3 (BUB3), a component of SAC. While both conditions induce CIN, a defect in YY2/SAC activity enhances mitosis and tumor growth. Meanwhile, hyperactivation of SAC mediated by YY2/BUB3 triggers a delay in mitosis and suppresses growth. Furthermore, it is revealed that YY2/BUB3-mediated excessive CIN causes higher cell death rates and drug sensitivity, whereas residual tumor cells that survived DNA damage-based therapy have moderate CIN and increased drug resistance. These results provide insights into the role of SAC activity and CIN levels in influencing tumor cell survival and drug response, as well as suggest a novel anti-tumor therapeutic strategy that combines SAC activity modulators and DNA-damage agents.

8.
Open Life Sci ; 19(1): 20220862, 2024.
Article in English | MEDLINE | ID: mdl-38681729

ABSTRACT

This study aimed to investigate spontaneous hypothermia among emergency trauma patients and develop a predictive model. A cohort of 162 emergency trauma patients was categorized into hypothermic (n = 61) and control (n = 101) groups, with trauma severity assessed using the modified Glasgow Coma Scale (GCS). Univariate analysis revealed significant differences between the groups in trauma severity, posture, garment wetness, warming measures, pre-hospital fluid resuscitation, and modified GCS scores (P < 0.05). The hypothermic group exhibited lower prothrombin time compared to the control group (P < 0.05). A logistic regression model was constructed, expressed as Y = 25.76 - 1.030X 1 + 0.725X 2 + 0.922X 3 - 0.750X 4 - 0.57X 6, and its fit was evaluated using the Hosmer-Lemeshow test. The receiver operating characteristic curve demonstrated an area under the curve of 0.871, with 81.2% sensitivity and 79.5% specificity. The Youden index identified the optimal predictive cut-off at its highest (0.58). Validation results included 86.21% sensitivity, 82.93% specificity, and 84.29% accuracy. Risk factors for spontaneous hypothermia after emergency trauma encompassed trauma severity, posture during consultation, clothing dampness upon admission, warming measures during transfer, pre-hospital fluid resuscitation, and modified GCS scores. The risk prediction model demonstrated high accuracy, enabling effective assessment of spontaneous hypothermia risk in emergency trauma patients and facilitating preventive measures.

9.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Article in English | MEDLINE | ID: mdl-38554534

ABSTRACT

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Subject(s)
Fruit , Gibberellins , Plant Growth Regulators , Vitis , Vitis/genetics , Vitis/metabolism , Vitis/drug effects , Vitis/growth & development , Gibberellins/metabolism , Gibberellins/pharmacology , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Fruit/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Phys Med Biol ; 69(9)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38537298

ABSTRACT

Objective.Accurate assessment of pleural line is crucial for the application of lung ultrasound (LUS) in monitoring lung diseases, thereby aim of this study is to develop a quantitative and qualitative analysis method for pleural line.Approach.The novel cascaded deep learning model based on convolution and multilayer perceptron was proposed to locate and segment the pleural line in LUS images, whose results were applied for quantitative analysis of textural and morphological features, respectively. By using gray-level co-occurrence matrix and self-designed statistical methods, eight textural and three morphological features were generated to characterize the pleural lines. Furthermore, the machine learning-based classifiers were employed to qualitatively evaluate the lesion degree of pleural line in LUS images.Main results.We prospectively evaluated 3770 LUS images acquired from 31 pneumonia patients. Experimental results demonstrated that the proposed pleural line extraction and evaluation methods all have good performance, with dice and accuracy of 0.87 and 94.47%, respectively, and the comparison with previous methods found statistical significance (P< 0.001 for all). Meanwhile, the generalization verification proved the feasibility of the proposed method in multiple data scenarios.Significance.The proposed method has great application potential for assessment of pleural line in LUS images and aiding lung disease diagnosis and treatment.


Subject(s)
Lung , Pneumonia , Humans , Lung/diagnostic imaging , Thorax , Ultrasonography/methods , Neural Networks, Computer
11.
Front Surg ; 11: 1307460, 2024.
Article in English | MEDLINE | ID: mdl-38486796

ABSTRACT

Introduction: The Tarlov cysts are pathological enlargements of the cerebrospinal fluid spaces between the endoneurium and perineurium, which can cause intolerable sciatic pain, motor impairment of lower limbs, and bladder/bowel dysfunction. Currently, the treatment results are unsatisfactory due to the low cure rates and extensive surgical trauma. Thus, there is an ongoing exploration of surgical techniques for Tarlov treatment. In the current study, we present a novel neuroendoscopic-assisted technique that combines the fenestration, leakage sealing, and tamponade of the Tarlov cyst. Methods: Between January 2020 and December 2021, a total of 32 Tarlov patients were enrolled and received neuroendoscopic-assisted surgery. Their pre- and post-surgical Visual Analogue Scale (VAS) scores, major complaints, and MR imaging were recorded for comparison. Results: 27 of 32 patients (84.4%) patients demonstrated immediate pain relief as their VAS scores decreased from 5.6 ± 1.5 to 2.5 ± 1.1 (p < 0.01) on the first day after surgery. At the 3-month follow-up, the patients' average VAS score continued to decrease (1.94 ± 0.8). Meanwhile, saddle paresthesia, urinary incontinence, and constipation were relieved in 6 (50%), 4 (80%), and 5 (41.7%), respectively, according to patients self-report. No surgical-related complication was observed in any of the cases. Discussion: We conclude that neuroendoscopic-assisted surgery is an effective surgical method for symptomatic Tarlov cysts with minimized complications.

12.
BMC Public Health ; 24(1): 305, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38279121

ABSTRACT

OBJECTIVES: To explore the prevalence and associated factors of obesity in Tibetan adults in Qinghai, China, and to determine the association between the FTO (rs1121980 and rs17817449) and MC4R gene (rs17782313 and rs12970134) polymorphisms with obesity. METHODS: A cross-sectional survey was conducted in 2015 in Qinghai to selected Tibetan adults aged 20 to 80 years. Prevalence of obesity (BMI ≥ 28 kg/m2) and overweight (BMI 24 ~ 27.9 kg/m2) were evaluated. Multivariable logistic models were used to determine the associated factors. Pair-matched subjects of obesity cases and normal-weight controls were selected for the gene polymorphism analyses. Conditional logistic models were used to assess the association between gene polymorphisms with obesity. Additive and multiplicative gene-environment interactions were tested. RESULTS: A total of 1741 Tibetan adults were enrolled. The age- and sex- standardized prevalence of obesity and overweight was 18.09% and 31.71%, respectively. Male sex, older age, heavy level of leisure-time exercise, current smoke, and heavy level of occupational physical activity were associated with both obesity and overweight. MC4R gene polymorphisms were associated with obesity in Tibetan adults. No significant gene-environment interaction was detected. CONCLUSION: The prevalence of obesity and overweight in Tibetan adults was high. Both environmental and genetic factors contributed to the obesity prevalent.


Subject(s)
Genetic Predisposition to Disease , Overweight , Adult , Male , Humans , Overweight/epidemiology , Overweight/genetics , Prevalence , Cross-Sectional Studies , Tibet/epidemiology , Body Mass Index , Polymorphism, Single Nucleotide , Obesity/epidemiology , Obesity/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
13.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 137-149, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258637

ABSTRACT

As one of the key enzymes in cell metabolism, the activity of citrate synthase 3 (CS3) regulates the substance and energy metabolism of organisms. The protein members of CS3 family were identified from the whole genome of apple, and bioinformatics analysis was performed and expression patterns were analyzed to provide a theoretical basis for studying the potential function of CS3 gene in apple. BLASTp was used to identify members of the apple CS3 family based on the GDR database, and the basic information of CS3 protein sequence, subcellular localization, domain composition, phylogenetic relationship and chromosome localization were analyzed by Pfam, SMART, MEGA5.0, clustalx.exe, ExPASy Proteomics Server, MEGAX, SOPMA, MEME, WoLF PSORT and other software. The tissue expression and inducible expression characteristics of 6 CS3 genes in apple were determined by acid content and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Apple CS3 gene family contains 6 members, and these CS3 proteins contain 473-608 amino acid residues, with isoelectric point distribution between 7.21 and 8.82. Subcellular localization results showed that CS3 protein was located in mitochondria and chloroplasts, respectively. Phylogenetic analysis divided them into 3 categories, and the number of genes in each subfamily was 2. Chromosome localization analysis showed that CS3 gene was distributed on different chromosomes of apple. The secondary structure of protein is mainly α-helix, followed by random curling, and the proportion of ß-angle is the smallest. The 6 members were all expressed in different apple tissues. The overall expression trend from high to low was the highest relative expression content of MdCS3.4, followed by MdCS3.6, and the relative expression level of other members was in the order of MdCS3.3 > MdCS3.2 > MdCS3.1 > MdCS3.5. qRT-PCR results showed that MdCS3.1 and MdCS3.3 genes had the highest relative expression in the pulp of 'Chengji No. 1' with low acid content, and MdCS3.2 and MdCS3.3 genes in the pulp of 'Asda' with higher acid content had the highest relative expression. Therefore, in this study, the relative expression of CS3 gene in apple cultivars with different acid content in different apple varieties was detected, and its role in apple fruit acid synthesis was analyzed. The experimental results showed that the relative expression of CS3 gene in different apple varieties was different, which provided a reference for the subsequent study of the quality formation mechanism of apple.


Subject(s)
Citric Acid , Malus , Malus/genetics , Citrate (si)-Synthase , Phylogeny , Citrates
14.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069191

ABSTRACT

Skin color is an important trait that is mainly determined by the content and composition of anthocyanins in apples. In this study, a new bud mutant (RM) from 'Oregon Spur II' (OS) of Red Delicious apple was obtained to reveal the mechanism underlying red color formation. Results showed that the total anthocyanin content in RM was significantly higher than that in OS with the development of fruit. Through widely-targeted metabolomics, we found that cyanidin-3-O-galactoside was significantly accumulated in the fruit skin of RM. Transcriptome analysis revealed that the structural gene MdF3H and MdMYB66 transcription factor were significantly up-regulated in the mutant. Overexpression of MdMYB66 in apple fruit and apple callus significantly promoted anthocyanin accumulation and significantly increased the expression level of MdMYB66 and structural genes related to anthocyanin synthesis. Y1H and LUC analysis verified that MdMYB66 could specifically bind to the promoter of MdF3H. The results of the double luciferase activity test showed that MdMYB66 activated MdF3H 3.8 times, which led to increased anthocyanin contents. This might explain the phenotype of red color in RM at the early stage. Taken together, these results suggested that MdMYB66 was involved in regulating the anthocyanin metabolic pathways through precise regulation of gene expression. The functional characterization of MdMYB66 provides insight into the biosynthesis and regulation of anthocyanins.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Fruit/genetics , Fruit/metabolism , Anthocyanins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
15.
BMC Plant Biol ; 23(1): 632, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38066449

ABSTRACT

BACKGROUND: Anthocyanin synthase (ANS) is the enzyme downstream of the anthocyanins synthesis pathway and the rate-limiting enzyme of the synthesis pathway. It catalyzes the conversion of colorless anthocyanins to anthocyanins and plays an important role in plant color presentation and stress resistance. However, ANS gene is rarely studied in grapes. RESULTS: In this study, 121 VvANS genes were identified and distributed on 18 chromosomes, VvANS family members were divided into 8 subgroups. Secondary structure prediction showed mainly irregular coils and α-helices, and subcellular localization indicated that VvANS gene family is mainly located in chloroplast, cytoplasm and nucleus. The promoter region of the VvANS gene family contains multiple cis-acting elements that are associated with light, abiotic stress, and hormones. Intraspecific collinearity analysis showed that there were 13 pairs of collinearity between VvANS genes. Interspecific collinearity analysis showed that there was more collinearity between grape, apple and Arabidopsis, but less collinearity between grape and rice. Microarray data analysis showed that VvANS17, VvANS23 and VvANS75 had higher expression levels in flesh and peel, while VvANS25, VvANS64 and VvANS106 had higher expression levels in flower. The results of qRT-PCR analysis showed that VvANS genes were expressed throughout the whole process of fruit coloring, such as VvANS47 and VvANS55 in the green fruit stage, VvANS3, VvANS64 and VvANS90 in the initial fruit color turning stage. The expression levels of VvANS21, VvANS79 and VvANS108 were higher at 50% coloring stage, indicating that these genes play an important role in the fruit coloring process. VvANS4, VvANS66 and VvANS113 had the highest expression levels in the full maturity stage. CONCLUSIONS: These results indicated that different members of VvANS gene family played a role in different coloring stages, and this study laid a foundation for further research on the function of ANS gene family.


Subject(s)
Vitis , Vitis/genetics , Vitis/metabolism , Fruit/metabolism , Anthocyanins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Phylogeny
16.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4965-4981, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38147995

ABSTRACT

Pyruvate dehydrogenase E1 component subunit beta-1 (PDHB-1) is a gene encoding the ß-subunit of pyruvate dehydrogenase complex, which plays an important role in fruit acid accumulation. The aim of this study was to investigate the evolution characteristics of apple PDHB-1 family and its expression in apples with different acid contents. Bioinformatics analysis was performed using databases including NCBI, Pfam and software including ClustalX, MEGA, and TBtools. By combining titratable acid content determination and quantitative real-time PCR (qRT-PCR), the expression of this family genes in the peel and pulp of apple 'Asda' and 'Chengji No.1' with different acid content were obtained, respectively. The family members were mainly located in chloroplast, cytoplasm and mitochondria. α-helix and random coil were the main factors for the formation of secondary structure in this family. Tissue-specific expression profiles showed that the expression of most members were higher in fruit than in other tissues. qRT-PCR results showed that the expression profile of most members was consistent with the profile of titratable acid contents. In the peel, the expression levels of 14 members in 'Asda' apples with high acid content were significantly higher than that in 'Chengji No.1' apples with low acid content, where the expression difference of MdPDHB1-15 was the most significant. In the pulp, the expression levels of 17 members in 'Asda' apples were significantly higher than that in 'Chengji No.1' apples, where MdPDHB1-01 was the most highly expressed. It was predicted that PDHB-1 gene family in apple plays an important role in the regulation of fruit acidity.


Subject(s)
Malus , Malus/genetics , Malus/chemistry , Malus/metabolism , Fruit/genetics , Protein Structure, Secondary
17.
BMC Plant Biol ; 23(1): 607, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38030998

ABSTRACT

BACKGROUND: Bud sport is a kind of somatic mutation that usually occurred in apple. 'Red Delicious' is considered to be a special plant material of bud sport, whereas the genetic basis of plant mutants is still unknown. In this study, we used whole-genome resequencing and transcriptome sequencing to identify genes related to spur-type and skin-color in the 'Red Delicious' (G0) and its four generation mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee Spur' (G4). RESULTS: The number of single nucleotide polymorphisms (SNPs), insertions and deletions (InDels) and structural variations (SVs) were decreased in four generation mutants compared to G0, and the number of unique SNPs and InDels were over 9-fold and 4-fold higher in G1 versus (vs.) G2 and G2 vs. G3, respectively. Chromosomes 2, 5, 11 and 15 carried the most SNPs, InDels and SVs, while chromosomes 1 and 6 carried the least. Meanwhile, we identified 4,356 variation genes by whole-genome resequencing and transcriptome, and obtained 13 and 16 differentially expressed genes (DEGs) related to spur-type and skin-color by gene expression levels. Among them, DELLA and 4CL7 were the potential genes that regulate the difference of spur-type and skin-color characters, respectively. CONCLUSIONS: Our study identified potential genes associated with spur-type and skin-color differences in 'Red Delicious' and its four generation mutants, which provides a theoretical foundation for the mechanism of the apple bud sport.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Fruit/genetics , Genes, Plant , INDEL Mutation , Gene Expression Profiling , Gene Expression Regulation, Plant
18.
Int J Biol Sci ; 19(14): 4525-4538, 2023.
Article in English | MEDLINE | ID: mdl-37781025

ABSTRACT

Metabolic reprogramming is a hallmark of cancers crucial for fulfilling the needs of energy, building blocks, and antioxidants to support tumor cells' rapid proliferation and to cope with the harsh microenvironment. Pre-B-cell leukemia transcription factor 3 (PBX3) is a member of the PBX family whose expression is up-regulated in various tumors, however, whether it is involved in tumor cell metabolic reprogramming remains unclear. Herein, we report that PBX3 is a positive regulator of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway (PPP). PBX3 promoted G6PD transcriptional activity in tumor cells by binding directly to its promoter, leading to PPP stimulation and enhancing the production of nucleotides and NADPH, a crucial reductant, thereby promoting nucleic acid and lipid biosynthesis while decreasing intracellular reactive oxygen species levels. The PBX3/G6PD axis also promoted tumorigenic potential in vitro and in vivo. Collectively, these findings reveal a novel function of PBX3 as a regulator of G6PD, linking its oncogenic activity with tumor cell metabolic reprogramming, especially PPP. Furthermore, our results suggested that PBX3 is a potential target for metabolic-based anti-tumor therapeutic strategies.


Subject(s)
Colorectal Neoplasms , Glucosephosphate Dehydrogenase , Humans , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Pentose Phosphate Pathway/genetics , Reactive Oxygen Species/metabolism , Carcinogenesis , Colorectal Neoplasms/genetics , Tumor Microenvironment
19.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894862

ABSTRACT

Q-type C2H2 zinc finger proteins (ZFPs), the largest family of transcription factors, have been extensively studied in plant genomes. However, the genes encoding this transcription factor family have not been explored in grapevine genomes. Therefore, in this study, we conducted a genome-wide identification of ZFP genes in three species of grapevine, namely Vitis vinifera, Vitis riparia, and Vitis amurensis, based on the sequence databases and phylogenetic and their conserved domains. We identified 52, 54, and 55 members of Q-type C2H2 ZFPs in V. vinifera, V. riparia, and V. amurensis, respectively. The physical and chemical properties of VvZFPs, VrZFPs, and VaZFPs were examined. The results showed that these proteins exhibited differences in the physical and chemical properties and that they all were hydrophobic proteins; the instability index showed that the four proteins were stable. The subcellular location of the ZFPs in the grapevine was predicted mainly in the nucleus. The phylogenetic tree analysis of the amino acid sequences of VvZFP, VaZFP, VrZFP, and AtZFP proteins showed that they were closely related and were divided into six subgroups. Chromosome mapping analysis showed that VvZFPs, VrZFPs, and VaZFPs were unevenly distributed on different chromosomes. The clustered gene analysis showed that the motif distribution was similar and the sequence of genes was highly conserved. Exon and intron structure analysis showed that 118 genes of ZFPs were intron deletion types, and the remaining genes had variable numbers of introns, ranging from 2 to 15. Cis-element analysis showed that the promoter of VvZFPs contained multiple cis-elements related to plant hormone response, stress resistance, and growth, among which the stress resistance elements were the predominant elements. Finally, the expression of VvZFP genes was determined using real-time quantitative PCR, which confirmed that the identified genes were involved in response to methyl jasmonate (MeJA), abscisic acid (ABA), salicylic acid (SA), and low-temperature (4 °C) stress. VvZFP10-GFP and VvZFP46-GFP fusion proteins were localized in the nucleus of tobacco cells, and VvZFP10 is the most responsive gene among all VvZFPs with the highest relative expression level to MeJA, ABA, SA and low-temperature (4 °C) stress. The present study provides a theoretical basis for exploring the mechanism of response to exogenous hormones and low-temperature tolerance in grapes and its molecular breeding in the future.


Subject(s)
CYS2-HIS2 Zinc Fingers , CYS2-HIS2 Zinc Fingers/genetics , Phylogeny , Plant Proteins/metabolism , Genome, Plant , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Zinc Fingers/genetics
20.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628740

ABSTRACT

To elucidate the structural characteristics, phylogeny and biological function of anthocyanin synthase (ANS) and its role in anthocyanin synthesis, members of the strawberry ANS gene family were obtained by whole genome retrieval, and their bioinformatic analysis and expression analysis at different developmental stages of fruit were performed. The results showed that the strawberry ANS family consisted of 141 members distributed on 7 chromosomes and could be divided into 4 subfamilies. Secondary structure prediction showed that the members of this family were mainly composed of random curls and α-helices, and were mainly located in chloroplasts, cytoplasm, nuclei and cytoskeletons. The promoter region of the FvANS gene family contains light-responsive elements, abiotic stress responsive elements and hormone responsive elements, etc. Intraspecific collinearity analysis revealed 10 pairs of FvANS genes, and interspecific collinearity analysis revealed more relationships between strawberries and apples, grapes and Arabidopsis, but fewer between strawberries and rice. Chip data analysis showed that FvANS15, FvANS41, FvANS47, FvANS48, FvANS49, FvANS67, FvANS114 and FvANS132 were higher in seed coat tissues and endosperm. FvANS16, FvANS85, FvANS90 and FvANS102 were higher in internal and fleshy tissues. Quantitative real-time PCR (qRT-PCR) showed that the ANS gene was expressed throughout the fruit coloring process. The expression levels of most genes were highest in the 50% coloring stage (S3), such as FvANS16, FvANS19, FvANS31, FvANS43, FvANS73, FvANS78 and FvANS91. The expression levels of FvANS52 were the highest in the green fruit stage (S1), and FvANS39 and FvANS109 were the highest in the 20% coloring stage (S2). These results indicate that different members of the FvANS gene family play a role in different pigmentation stages, with most genes playing a role in the expression level of the rapid accumulation of fruit coloring. This study lays a foundation for further study on the function of ANS gene family.


Subject(s)
Arabidopsis , Fragaria , Anthocyanins/genetics , Fragaria/genetics , Fruit/genetics , Nitric Oxide Synthase , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...