Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Front Pharmacol ; 15: 1206718, 2024.
Article in English | MEDLINE | ID: mdl-38828449

ABSTRACT

The pharmacodynamic substances in "Scrophulariae Radix-Fritillaria" and the molecular mechanisms underlying its therapeutic effects against goiter were analyzed through metabolomics and serum pharmaco-chemistry. A rat model of goiter was established using propylthiouracil (PTU), and the animals were treated using "Scrophulariae Radix-Fritillaria." The efficacy of the drug pair was evaluated in terms of thyroid gland histopathology and blood biochemical indices. Serum and urine samples of the rats were analyzed by UPLC-Q-TOF/MS. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed to screen potential biomarkers in urine and the corresponding metabolic pathways. The blood components of "Scrophulariae Radix-Fritillaria" were also identified, and their correlation with urine biomarkers was analyzed in order to screen for potential bioactive compounds. "Scrophulariae Radix-Fritillaria" mitigated injury to thyroid tissues and normalized the levels of the thyroid hormones FT3, FT4, and TSH. We also identified 22 urine biomarkers related to goiter, of which 19 were regulated by "Scrophulariae Radix-Fritillaria." Moreover, urine biomarkers are involved in tryptophan metabolism, steroid hormone biosynthesis, and beta-alanine metabolism, and these pathways may be targeted by the drug pair. In addition, 47 compounds of "Scrophulariae Radix-Fritillaria" were detected by serum pharmacochemistry, of which nine components, namely, syringic acid, paeonol, cedrol, and cis-ferulic acid, fetisinine, aucubigenin, linolenic acid, ussuriedine, and 5-(methylsulfanyl)pentanenitrile, were identified as potential effective substances against goiter. To summarize, we characterized the chemical components and mechanisms of "Scrophulariae Radix-Fritillaria" involved in the treatment of goiter, and our findings provide an experimental basis for its clinical application.

2.
Int J Biol Macromol ; 270(Pt 2): 132420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763246

ABSTRACT

Hippophae rhamnoides (Sea buckthorn) is an excellent medicinal and edible plant owing to its high nutritional and health-promoting properties. As an important bioactive component, H. rhamnoides polysaccharides (HRPs) have aroused wide attention due to their various pharmacological activities, including hepatoprotective, immuno-modulatory, anti-inflammatory, anti-oxidant, anti-tumor, hypoglycemic, anti-obesity, and so on. Nevertheless, the development and utilization of HRP-derived functional food and medicines are constrained to a lack of comprehensive understanding of the structure-activity relationship, application, and safety of HRPs. This review systematically summarizes the advancements on the extraction, purification, structural characteristics, pharmacological activities and mechanisms of HRPs. The structure-activity relationship, safety evaluation, application, as well as the shortcomings of current research and promising prospects are also highlighted. This article aims to offer a comprehensive understanding of HRPs and lay a groundwork for future research and utilization of HRPs as multifunctional biomaterials and therapeutic agents.


Subject(s)
Hippophae , Polysaccharides , Hippophae/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Structure-Activity Relationship , Humans , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612664

ABSTRACT

Macrophages (Mφs) play a crucial role in the homeostasis of the periapical immune micro-environment caused by bacterial infection. Mφ efferocytosis has been demonstrated to promote the resolution of multiple infected diseases via accelerating Mφ polarization into M2 type. However, the Mφ efferocytosis-apical periodontitis (AP) relationship has not been elucidated yet. This study aimed to explore the role of Mφ efferocytosis in the pathogenesis of AP. Clinical specimens were collected to determine the involvement of Mφ efferocytosis in the periapical region via immunohistochemical and immunofluorescence staining. For a further understanding of the moderator effect of Mφ efferocytosis in the pathogenesis of AP, both an in vitro AP model and in vivo AP model were treated with ARA290, a Mφ efferocytosis agonist. Histological staining, micro-ct, flow cytometry, RT-PCR and Western blot analysis were performed to detect the inflammatory status, alveolar bone loss and related markers in AP models. The data showed that Mφ efferocytosis is observed in the periapical tissues and enhancing the Mφ efferocytosis ability could effectively promote AP resolution via facilitating M2 Mφ polarization. Collectively, our study demonstrates the functional importance of Mφ efferocytosis in AP pathology and highlights that accelerating Mφ efferocytosis via ARA290 could serve as an adjuvant therapeutic strategy for AP.


Subject(s)
Efferocytosis , Periapical Periodontitis , Humans , Periapical Tissue , Adjuvants, Immunologic , Macrophages
4.
Heliyon ; 10(7): e28581, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586351

ABSTRACT

Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that have neuroprotective effects on the central nervous system. In this paper, we review the ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning and memory disorders to provide valuable references and insights for the development of new drugs for the treatment of learning and memory disorders. Our summary results suggest that Panax ginseng saponins have significant effects on improving learning and memory disorders, and these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, antioxidant, ß-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin-like constituents as drug candidates for improving learning and memory disorders.

5.
Int J Biol Macromol ; 267(Pt 2): 131157, 2024 May.
Article in English | MEDLINE | ID: mdl-38552684

ABSTRACT

This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ±â€¯0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and ß-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.


Subject(s)
Catechin , Hot Temperature , Molecular Docking Simulation , Solubility , Soybean Proteins , Soybean Proteins/chemistry , Catechin/chemistry , Emulsions/chemistry , Hydrophobic and Hydrophilic Interactions , Heating , Protein Binding , Emulsifying Agents/chemistry , Protein Structure, Secondary
6.
Food Chem X ; 22: 101296, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38550892

ABSTRACT

Hyperglycemia can cause early damage to human bady and develop into diabates that will severely threaten human healthy. The effectively clinical treatment of hyperglycemiais is by inhibiting the activity of α-amylase. Black tea has been reported to show inhibitory effect on α-amylase and can be used for hyperglycemia treatment. However, the mechanism underlying is unclear. In this study, in vivo experiment showed that black tea theaflavins extract (BTE) effectively alleviated hyperglycemia. In vitro experiment showed that the effects may be caused by the interation between theaflavins and α-amylase. While TF1 and TF3 were mixed type inhibitors of α-amylase, TF2A and TF2B were competitive inhibitors of α-amylase. Molecular docking analysis showed that theaflavins monomers interacted with the hydrophobic region of α-amylase. Further study verified that monomer-α-amylase complex was spontaneously formed depending on hydrophobic interactions. Taken together, theaflavins showed potential anti-hyperglycemia effect via inhibiting α-amylase activity. Our results suggested that theaflavins might be utilized as a new type of α-amylase inhibitor to prevent and cure hyperglycemia.

7.
PeerJ ; 12: e16982, 2024.
Article in English | MEDLINE | ID: mdl-38406282

ABSTRACT

Background: Saccharum spp. is the primary source of sugar and plays a significant role in global renewable bioenergy. Sugarcane bacilliform virus (SCBV) is one of the most important viruses infecting sugarcane, causing severe yield losses and quality degradation. It is of great significance to reveal the pathogenesis of SCBV and resistance breeding. However, little is known about the viral virulence factors or RNA silencing suppressors and the molecular mechanism of pathogenesis. Methods: To systematically investigate the functions of the unknown protein P2 encoded by SCBV ORF2. Phylogenetic analysis was implemented to infer the evolutionary relationship between the P2 of SCBV and other badnaviruses. The precise subcellular localization of P2 was verified in the transient infiltrated Nicotiana benthamiana epidermal mesophyll cells and protoplasts using the Laser scanning confocal microscope (LSCM). The post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) RNA silencing suppressor activity of P2 was analyzed, respectively. Furthermore, restriction digestion and RT-qPCR assays were conducted to verify the probable mechanism of P2 on repressing DNA methylation. To explore the pathogenicity of P2, a potato virus X-based viral vector was used to heterologously express SCBV P2 and the consequent H2O2 accumulation was detected by the 3,3'-diaminobenzidine (DAB) staining method. Results: Phylogenetic analysis shows that SCBV has no obvious sequence similarity and low genetic relatedness to Badnavirus and Tungrovirus representatives. LSCM studies show that P2 is localized in both the cytoplasm and nucleus. Moreover, P2 is shown to be a suppressor of PTGS and TGS, which can not only repress ssRNA-induced gene silencing but also disrupt the host RNA-directed DNA methylation (RdDM) pathway. In addition, P2 can trigger an oxidative burst and cause typical hypersensitive-like response (HLR) necrosis in systemic leaves of N. benthamiana when expressed by PVX. Overall, our results laid a foundation for deciphering the molecular mechanism of SCBV pathogenesis and made progress for resistance breeding.


Subject(s)
Badnavirus , Nucleic Acids , Virulence Factors , Phylogeny , Hydrogen Peroxide , Plant Breeding
8.
PLoS One ; 19(1): e0297164, 2024.
Article in English | MEDLINE | ID: mdl-38241246

ABSTRACT

Deer products from sika deer (Cervus nippon) and red deer (C. elaphus) are considered genuine and used for Traditional Chinese Medicine (TCM) materials in China. Deer has a very high economic and ornamental value, resulting in the formation of a characteristic deer industry in the prescription preparation of traditional Chinese medicine, health food, cosmetics, and other areas of development and utilization. Due to the high demand for deer products, the products are expensive and have limited production, but the legal use of deer is limited to only two species of sika deer and red deer; other wild deer are prohibited from hunting, so there are numerous cases of mixing and adulteration of counterfeit products and so on. There have been many reports that other animal (pig, cow, sheep, etc.) tissues or organs are often used for adulteration and confusion, resulting in poor efficacy of deer traditional medicine and trade fraud in deer products. To authenticate the deer products in a rapid and effective manner, the analysis used 22 deer products (antler, meat, bone, fetus, penis, tail, skin, and wool) that were in the form of blind samples. Total DNA extraction using a modified protocol successfully yielded DNA from the blind samples that was useful for PCR. Three candidate DNA barcoding loci, cox1, Cyt b, and rrn12, were evaluated for their discrimination strength through BLAST and phylogenetic clustering analyses. For the BLAST analysis, the 22 blind samples obtained 100% match identity across the three gene loci tested. It was revealed that 12 blind samples were correctly labeled for their species of origin, while three blind samples that were thought to originate from red deer were identified as C. nippon, and seven blind samples that were thought to originate from sika deer were identified as C. elaphus, Dama dama, and Rangifer tarandus. DNA barcoding analysis showed that all three gene loci were able to distinguish the two Cervus species and to identify the presence of adulterant species. The DNA barcoding technique was able to provide a useful and sensitive approach in identifying the species of origin in deer products.


Subject(s)
DNA Barcoding, Taxonomic , Deer , Male , Cattle , Female , Animals , Sheep/genetics , Swine/genetics , Phylogeny , Deer/genetics , DNA/analysis , Sequence Analysis, DNA
9.
Chem Biodivers ; 21(4): e202301733, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217462

ABSTRACT

Bupleurum scorzonerifolium willd. (BS) and its vinegar-baked product (VBS) has been frequently utilized for depression management in clinical Chinese medicine. This paper aims to elucidate the antidepressant mechanism of BS and VBS from the perspectives of metabonomics and gut microbiota. A rat model of depression was established by CUMS combined with feeding alone to evaluate the antidepressant effects of BS and VBS. UPLC-Q-TOF-MS/MS-based metabolomics and 16S rRNA sequencing of rat feces were applied and the correlation of differential metabolic markers and intestinal floras was analyzed. The result revealed that BS and VBS significantly improved depression-like behaviors and the levels of monoamine neurotransmitters in CUMS rats. There were 27 differential endogenous metabolites between CUMS and normal rats, which were involved in 8 metabolic pathways. Whereas, BS and VBS could regulate 18 and 20 metabolites respectively, wherein fifteen of them were shared metabolites. On the genus level, BS and VBS could regulate twenty-five kinds of intestinal floras in CUMS rats, that is, they increased the abundance of beneficial bacteria and decreased the abundance of harmful bacteria. In conclusion, both BS and VBS exert excellent antidepressant effects by regulating various metabolic pathways and ameliorating intestinal microflora dysfunction.


Subject(s)
Bupleurum , Drugs, Chinese Herbal , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Acetic Acid , Tandem Mass Spectrometry , RNA, Ribosomal, 16S , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Metabolomics/methods
10.
Phytochem Anal ; 35(2): 336-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37787024

ABSTRACT

INTRODUCTION: The root of Bupleurum scorzonerifolium Willd. (BS) is officially recognized in the Chinese Pharmacopoeia. In contrast, the aerial part of BS (ABS), accounting for 80% of BS, is typically discarded, causing potential waste of medicinal resources. ABS has shown benefits in the treatment of inflammation-related diseases in China and Spain, and the material basis underlying its anti-inflammatory effects must be systematically elucidated for the rational use of ABS. OBJECTIVE: We aimed to screen and validate the anti-inflammatory quality markers (Q-markers) of ABS and to confirm the ideal time for ABS harvesting. METHODS: The chemical components and anti-inflammatory effects of ABS from 10 extracted parts were analyzed by UPLC-Q-TOF-MS/MS and in a lipopolysaccharide (LPS)-induced cell model. Anti-inflammatory substances were screened by Pearson bivariate analysis and gray correlation analysis, and the anti-inflammatory effects were verified in a zebrafish tail-cutting inflammation model. HPLC was applied to measure the Q-marker contents of ABS in different harvesting periods. RESULTS: Ten ABS extracts effectively alleviated the increase in LPS-induced proinflammatory cytokines in RAW 264.7 cells. Forty components were identified from them, among which 27 were common components. Eight components were correlated with anti-inflammatory effects, which were confirmed to reverse the expression of proinflammatory and anti-inflammatory factors in a zebrafish model. Chlorogenic acid, hypericin, rutin, quercetin, and isorhamnetin can be detected by HPLC, and the maximum contents of these five Q-markers were obtained in the sample harvested in August. CONCLUSION: The anti-inflammatory Q-markers of ABS were elucidated by chromatographic-pharmacodynamic-stoichiometric analysis, which served as a crucial basis for ABS quality control.


Subject(s)
Bupleurum , Tandem Mass Spectrometry , Mice , Animals , Zebrafish , Chromatography, High Pressure Liquid , Bupleurum/chemistry , RAW 264.7 Cells , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Inflammation/drug therapy , Plant Components, Aerial/chemistry
11.
Heliyon ; 9(12): e20030, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125457

ABSTRACT

Physalis Calyx seu Fructus is the dry calyx or the calyx with fruit of the Solanaceae plant Physalis alkekengi L. var. franchetii (Mast.) Makino, with a long history of use in medicine and food. However, despite its many potential therapeutic and culinary applications, P. alkekengi is not being exploited for these applications on a large scale. This study analysed various research related to the different chemical components of P. alkekengi, including steroids, flavonoids, alkaloids, phenylpropanoids, sucrose esters, piperazines, volatile oils, polysaccharides, amino acids, and trace elements. In addition, research related to the pharmacological activities of P. alkekengi, including its anti-inflammatory, anti microbial, antioxidative, hypoglycaemic, analgesic, anti-tumour, and immunomodulatory effects were investigated. Research articles from 1974 to 2023 were obtained from websites such as Google Scholar, Baidu Scholar, and China National Knowledge Infrastructure, and journal databases such as Scopus and PubMed, with the keywords such as Physalis alkekengi, components, effects, and activities. This study aims to provide a comprehensive understanding of the progress of phytochemical and pharmacological research on the phytochemical and pharmacological aspects of P. alkekengi and a reference for the better exploitation of P. alkekengi in the food and pharmaceutical industries.

12.
Dose Response ; 21(3): 15593258231197101, 2023.
Article in English | MEDLINE | ID: mdl-37654726

ABSTRACT

Although scutellarin has been extensively investigated, its effects on glioma are unclear. This study intended to reveal this regulation and the underlying mechanisms. The U251, M059K, and SF-295 cell lines were treated with gradient concentrations of scutellarin and then IC50 was calculated. SF-295 cells selected for subsequent procedures were treated with four concentrations of scutellarin. Then, proliferation, apoptosis, and cell cycle, as well as the protein and mRNA expression of significantly differentially expressed genes identified by next-generation sequencing (NGS), were examined. The curative effect of scutellarin was validated by 5-FU as the positive control. Scutellarin inhibited proliferation and induced apoptosis and G2/M cell cycle arrest in the SF-295 cell line in a dose-dependent manner. The effect of scutellarin was similar to but significantly weaker than the effect of 5-FU. The NGS results showed that genes associated with anti-apoptosis signaling pathways were significantly reduced after treatment. The Western blotting results indicated that the expressions of TP63/BIRC3/TRAF1/Bcl-2 were reduced in a dose-dependent manner, as well as the mRNA levels determined by qRT‒PCR. Our original conclusion revealed that scutellarin may inhibit glioma growth in a dose-dependent manner via the p63 signaling pathway which may provide a potential medicine for glioma chemotherapy.

13.
Biosensors (Basel) ; 13(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37504141

ABSTRACT

Over the past few decades, drug-induced liver damage (DILI) has become a serious public health problem due to drug abuse. Among multifarious reactive oxygen species, mounting evidence attests that ClO- has been used as a potential biomarker in DILI. In this work, a new "turn-on" fluorescent probe 1 was designed and synthesized by modifying 4'-hydroxybiphenyl-4-carbonitrile (dye 2) with N, N-dimethylthiocarbamate as a response site for detecting ClO-. Probe 1 displayed a low detection limit (72 nM), fast response time (30 s), wide pH operating range (6-8), great tissue penetration, large Stokes shift (125 nm) and 291-fold fluorescence enhancement at 475 nm in the mapping of ClO-. Probe 1 could trace amounts of exogenous and endogenous ClO- with high sensitivity in MCF-7 cells and HeLa cells. Expectantly, the fluoxetine-induced liver injury model is successfully established, and probe 1 has been used for detecting the fluctuation of ClO- levels in the mouse model of fluoxetine-induced liver injury. All in all, probe 1 with its high specificity, good biological compatibility and liver tissue penetration ability is expected to assist with the early diagnosis of DILI and the clinical screening of various new drugs. We expect that probe 1 could be efficiently used as a powerful molecular tool to predict clinical DILI and explore molecular mechanisms between molecules and disease.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fluorescent Dyes , Mice , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Hypochlorous Acid/chemistry , Fluoxetine
14.
Front Bioeng Biotechnol ; 11: 1219054, 2023.
Article in English | MEDLINE | ID: mdl-37441195

ABSTRACT

As nanotechnology develops in the fields of mechanical engineering, electrical engineering, information and communication, and medical care, it has shown great promises. In recent years, medical nanorobots have made significant progress in terms of the selection of materials, fabrication methods, driving force sources, and clinical applications, such as nanomedicine. It involves bypassing biological tissues and delivering drugs directly to lesions and target cells using nanorobots, thus increasing concentration. It has also proved useful for monitoring disease progression, complementary diagnosis, and minimally invasive surgery. Also, we examine the development of nanomedicine and its applications in medicine, focusing on the use of nanomedicine in the treatment of various major diseases, including how they are generalized and how they are modified. The purpose of this review is to provide a summary and discussion of current research for the future development in nanomedicine.

15.
Altern Ther Health Med ; 29(5): 400-409, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37171951

ABSTRACT

Context: At present, hormone therapy and surgery are the main treatments for thyroid cancer, and they have a quick effect but a high recurrence rate. Also, the side effects are significant. it's extremely urgent to explore treatments that can take into account both therapeutic benefits and side effects. Objective: The study intended to explore whether Xiaoluo has an inhibitory effect on the proliferation of thyroid-cancer cells in vitro and to examine the core target and key signaling pathway of Xiaoluo in the treatment of thyroid cancer, using the thyroid-cancer cell line SW579. Design: The research team performed an in-vitro study. Setting: The study took place at the College of Pharmacy at Harbin University of Commerce in Harbin, China. Outcome Measures: The research team used a Western blot analysis to detect the expression of apoptosis proteins-B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3-and the activity related to the signaling pathways phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin 1 (mTORC1). The team measured optical densities and inhibition rates for the 1, 2, 5, 10, and 15 mg/mL Xiaokuo groups and for a negative control group. The research team measured apoptosis, expression of Bcl-2, Bax, and Caspase-3, and expression of P13K, AKT, and mTor for the 10 µmol/L LY294002, 10 mg/mL Xiaoluo, 100 ng/mL IGF-1, and 100 ng/mL IGF-1+10 mg/mL Xiaoluo groups and for the blank control group. Results: The inhibition of SW579 cell proliferation increased with each increase in the Xiaoluo concentration from 1-15 mg/mL, and the inhibition rate reached 49.63% when the concentration was 15 mg/ml. The Xiaoluo group's late and total apoptosis rates were significantly higher (both P < .01) than those of the blank control group. The Xiaoluo group's expression of the Bcl-2 protein was significantly lower (P < .05), and its expressions of Bax and Caspase-3 were significantly higher (both P < .01) than those of the blank control group. The Xiaoluo group's expressions of P-PI3K, P-Akt, and P-MTOR were significantly lower than those of the blank group (all P < .01). These findings were comparable to those that occurred with use of the PI3K/AKT/mTORC1 signaling pathway inhibitor LY294002. Conclusions: Xiaoluo exerts its antithyroid-cancer effects through the induction of apoptosis in thyroid cancer cells through the inhibition of the PI3K/AKT/mTORC1 signaling pathway. Xiaoluo may serve as a potential therapeutic agent for the treatment of thyroid cancer.


Subject(s)
Proto-Oncogene Proteins c-akt , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Caspase 3/metabolism , Caspase 3/pharmacology , Insulin-Like Growth Factor I/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Apoptosis , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Sirolimus/pharmacology , Thyroid Neoplasms/drug therapy , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , Cell Proliferation , Cell Line, Tumor
16.
Chin Med ; 18(1): 10, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717898

ABSTRACT

BACKGROUND: Traditional Chinese medicine (TCM) posits that Chinese medicinal materials can only be clinically used after being processed and prepared into decoction pieces. Schisandra Chinensis Fructus (derived from the dried and mature fruits of Schisandra chinensis (Turcz.) Baill.) has been used as a traditional antiasthmatic, kidney strengthening, and hepatoprotective agent for 2000 years. The results of previous research show that decoction pieces of wine-steamed Schisandra chinensis (WSC) are more effective than raw decoction pieces of Schisandra chinensis (RSC) for treating cough and asthma. Steaming with wine was demonstrated to promote the dissolution of ingredients. However, the relationship between the changes in the components of the decoction pieces of WSC and the therapeutic effect remains unclear. METHODS: The efficacies of decoctions of RSC and WSC were compared using allergic asthma rats. The potential bioactive components in the serum of the WSC treatment group and the changes in the chemical composition of the RSC decoction pieces before and after wine steaming were determined by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC H-CLASS XEVO TQD) to speculate quality markers (Q-markers) related to the efficacy of WSC, which were subsequently verified based on a zebrafish inflammation model. RESULTS: Steaming RSC decoction pieces with wine was found to promote improvement of allergic asthma. Reverse tracing of 22 components detected in the serum of the high dose group of WSC (WSC-H) resulted in 12 ingredients being finally designated as potential effective components. Among these ingredients, 5 components, Schisandrin, Schisandrol B, Schisandrin A, Schisandrin B, and Gomisin D, had higher dissolution rates than RSC after steaming with wine. Validation by an inflammatory zebrafish model showed that these 5 ingredients had a dose-dependent effect and were therefore Q-markers for WSC in the treatment of allergic asthma. CONCLUSION: In this study, changes in the components of decoction pieces of RSC and WSC and Q-markers related to WSC efficacy were identified, providing valuable information for expanding the application of WSC and establishing a specific quality standard for WSC.

17.
J Ethnopharmacol ; 300: 115680, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36058479

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Metabolic syndrome (MetS) is a cluster of disease centered on obesity, which is the result of stagnation of liver qi according to traditional Chinese medicine. Panax notoginseng is a traditional Chinese herbal medicine, entering liver and stomach meridians and dissipating blood stasis, in which panax notoginseng saponins (PNS) are the main active components. However, its effects and mechanism on metabolic syndrome has not been revealed yet. AIM OF STUDY: To evaluate the anti-MetS effect of PNS, including body weight and adiposity, glucose metabolism and non-alcoholic fatty liver disease (NAFLD), as well as to explore the mechanism and signaling pathway of PNS on MetS effect. MATERIALS AND METHODS: HPLC was utilized to affirm the percentages of saponins in PNS. In vivo, normal C57BL/6J mice and high-fat diet (HFD)-induced MetS mice were used to evaluate anti-MetS effect of PNS. Body weight, food and water intake were recorded. NMR imager was used for NMR imaging and lipid-water analysis. Blood glucose detection, glucose and insulin tolerance test were performed to evaluate glucose metabolism. Biochemical indexes analysis and histopathological staining were used to evaluate the effect on NAFLD. The expressions of mRNA and proteins related to thermogenesis in adipose tissue were determined using real-time PCR and Western blot. In silico, network pharmacology was utilized to predict potential mechanism. In vitro, matured 3T3-L1 adipocyte was used as subject to confirm the signaling pathway by Western blot. RESULTS: We determined the content of PNS component by HPLC. In vivo, PNS could improve metabolic syndrome with weight loss, reduction of adiposity, improvement of adipose distribution, correction of glucose metabolism disorder and attenuation of NAFLD. Mechanismly, PNS boosted energy exhaustion and dramatically enhanced thermogenesis in brown adipose tissue (BAT), induced white adipose tissue (WAT) browning. In silico, utilizing network pharmacology strategy, we identified 307 candidate targets which were enriched in MAPK signaling pathway specifically in liver tissue and adipocyte. In vitro validation confirmed ERK and p38MAPK mediated anti-MetS effects of PNS, not JNK signaling pathway. CONCLUSION: PNS exerted protective effect on metabolic syndrome through MAPK-mediated adipose thermogenic activation, which may serve as a prospective therapeutic drug for metabolic syndrome.


Subject(s)
Drugs, Chinese Herbal , Insulins , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Panax notoginseng , Saponins , Animals , Blood Glucose , Body Weight , Drugs, Chinese Herbal/pharmacology , Glucose , Lipids , Metabolic Syndrome/drug therapy , Mice , Mice, Inbred C57BL , Network Pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/drug therapy , Panax notoginseng/chemistry , RNA, Messenger/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Water
18.
Am J Physiol Cell Physiol ; 324(2): C205-C221, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36534500

ABSTRACT

Cancer cachexia is common in many cancers and the loss of skeletal muscle mass compromises the response to therapies and quality of life. A contributing mechanism is oxidative stress and compounds able to attenuate it may be protective. Sulforaphane (SFN), a natural antioxidant in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) signaling to decrease oxidative stress. Although SFN has potential as a cancer therapeutic, whether it can attenuate muscle wasting in the absence or presence of chemotherapy is unknown. In healthy C2C12 myotubes, SFN administration for 48 h induced hypertrophy through increased myoblast fusion via Nrf2 and ERK signaling. To determine whether SFN could attenuate wasting induced by cancer cells, myotubes were cocultured with or without Colon-26 (C-26) cancer cells for 48 h and treated with 5-fluorouracil (5-FU, 5 µM) or vehicle (DMSO). SFN (10 µM) or DMSO was added for the final 24 h. Coculture with cancer cells in the absence and presence of 5-FU reduced myotube width by ∼30% (P < 0.001) and ∼20% (P < 0.01), respectively, which was attenuated by SFN (P < 0.05). Exposure to C-26 conditioned media reduced myotube width by 15% (P < 0.001), which was attenuated by SFN. Western immunoblotting and qRT-PCR confirmed activation of Nrf2 signaling and antioxidant genes. Coadministration of Nrf2 inhibitors (ML-385) or MEK inhibitors (PD184352) revealed that SFN's attenuation of atrophy was blocked by ERK inhibition. These data support the chemoprotective and antioxidative function of SFN in myotubes, highlighting its therapeutic potential for cancer-related muscle wasting.


Subject(s)
Antioxidants , Neoplasms , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Dimethyl Sulfoxide/metabolism , Quality of Life , Muscle Fibers, Skeletal/metabolism , Oxidative Stress , Muscular Atrophy/pathology , Neoplasms/metabolism , Fluorouracil/pharmacology
19.
J Pharm Biomed Anal ; 225: 115202, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36586383

ABSTRACT

Bupleurum scorzonerifolium (BS) is one of the sources of Bupleuri Radix, which was first recorded in Shennong's classic of materia medica. It has a medicinal history of 2000 years and is now widely used for the treatment of depression clinically. However, the material basis of antidepressant effects is unclear, and the quality evaluation method is lacking. The paper aims to investigate the antidepressant quality markers (Q-markers) of BS by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS). Firstly, the rat depression model was established by using chronic unpredictable mild stress (CUMS) combined with the solitary confinement method to evaluate the pharmacodynamics of BS. After verification of the antidepressant effect of BS, UPLC-ESI-Q-TOF-MS was used to analyze BS and the blood components of BS. A total of 34 components were identified in BS, in which 8 components, including saikosaponin a (SSa), saikosaponin c (SSc), saikosaponin d (SSd), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), glycyrrhetinic acid, nootkatone and valerenic acid, were detected in serum. SSa, SSc, SSd, SSb1 and SSb2 were found as metabolites, and glycyrrhetinic acid, nootkatone and valerenic Acid were identified as the prototypes in the blood. The depression model of zebrafish was established with reserpine to verify the antidepressant effect of the potential eight active components. The results showed that all these components could markedly improve the depressive behavior of zebrafish, increase the content of 5-HT and reduce the cortisol content. Finally, according to the principles of effectiveness, accessibility and measurability for Q-markers, SSa, SSc, and SSd were confirmed as Q-markers of BS, and the contents of 3 Q-markers in 10 batches of BS from different origins were determined to be 0.0728-1.465%. In addition, the total contents of 3 Q-markers in BS produced in Lindian, Heilongjiang Province, were higher than those in other origins. This paper provided a reliable method for the quality evaluation of BS for depression treatment.


Subject(s)
Bupleurum , Drugs, Chinese Herbal , Glycyrrhetinic Acid , Saponins , Rats , Animals , Drugs, Chinese Herbal/chemistry , Bupleurum/chemistry , Zebrafish , Saponins/chemistry , Quality Control , Antidepressive Agents , Glycyrrhetinic Acid/analysis , Chromatography, High Pressure Liquid/methods
20.
BMC Plant Biol ; 22(1): 484, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36217105

ABSTRACT

BACKGROUND: Maize rough dwarf disease (MRDD), caused by rice black-streaked dwarf virus (RBSDV) belonging to the Fijivirus genus, seriously threatens maize production worldwide. Three susceptible varieties (Ye478, Zheng 58, and Zhengdan 958) and two resistant varieties (P138 and Chang7-2) were used in our study. RESULTS: A set of ATP-binding cassette subfamily B (ABCB) transporter genes were screened to evaluate their possible involvements in RBSDV resistance. In the present study, ZmABCB15, an ABCB transporter family member, was cloned and functionally identified. Expression analysis showed that ZmABCB15 was significantly induced in the resistant varieties, not in the susceptible varieties, suggesting its involvement in resistance to the RBSDV infection. ZmABCB15 gene encodes a putative polar auxin transporter containing two trans-membrane domains and two P-loop nucleotide-binding domains. Transient expression analysis indicated that ZmABCB15 is a cell membrance localized protein. Over-expression of ZmABCB15 enhanced the resistance by repressing the RBSDV replication ratio. ZmABCB15 might participate in the RBSDV resistance by affecting the homeostasis of active and inactive auxins in RBSDV infected seedlings. CONCLUSIONS: Polar auxin transport might participate in the RBSDV resistance by affecting the distribution of endogenous auxin among tissues. Our data showed the involvement of polar auxin transport in RBSDV resistance and provided novel mechanism underlying the auxin-mediated disease control technology.


Subject(s)
Oryza , Plant Viruses , Virus Diseases , Adenosine Triphosphate , Indoleacetic Acids , Nucleotides , Oryza/genetics , Plant Diseases/genetics , Plant Viruses/genetics , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...