Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Animals (Basel) ; 12(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36290234

ABSTRACT

Failure in the epigenetic reprogramming of somatic cells is considered the main reason for lower cloned embryo development efficiency. Lysine crotonylation (Kcr) occupies an important position in epigenetic modification, while its effects on somatic cell reprogramming have not been reported. In this study, we detected the influence of sodium crotonate (NaCr) on the Kcr levels in three types of somatic cells (muscle-derived satellite cells, MDSCs; fetal fibroblast cells, FFCs; and ear tip fibroblast cells, EFCs). The three types of somatic cells were treated with NaCr for cloned embryo construction, and the cleavage rates and Kcr, H3K9cr, and H3K18cr levels in the cloned embryos were analyzed. The results showed that the abnormal levels of Kcr, H3K9cr, and H3K18cr were corrected in the treatment groups. Although there was no significant difference in the cloned embryo cleavage rate in the FFC treatment group, the cleavage rates of the cloned embryos in the MDSCs and EFCs treatment groups were increased. These findings demonstrated that the Kcr level was increased with NaCr treatment in somatic cells from Cashmere goat, which contributed to proper reprogramming. The reprogramming of somatic cells can be promoted and cloned embryo development can be improved through the treatment of somatic cells with NaCr.

2.
Front Cell Neurosci ; 16: 897146, 2022.
Article in English | MEDLINE | ID: mdl-36035262

ABSTRACT

Retinal prostheses partially restore vision in patients blinded by retinitis pigmentosa (RP) and age-related macular degeneration (AMD). One issue that limits the effectiveness of retinal stimulation is the desensitization of the retina response to repeated pulses. Rapid fading of percepts is reported in clinical studies. We studied the retinal output evoked by fixed pulse trains vs. pulse trains that have variable parameters pulse-to-pulse. We used the current clamp to record RGC spiking in the isolated mouse retina. Trains of biphasic current pulses at different frequencies and amplitudes were applied. The main results we report are: (1) RGC desensitization was induced by increasing stimulus frequency, but was unrelated to stimulus amplitude. Desensitization persisted when the 20 Hz stimulation pulses were applied to the retinal ganglion cells at 65 µA, 85 µA, and 105 µA. Subsequent pulses in the train evoked fewer spikes. There was no obvious desensitization when 2 Hz stimulation pulse trains were applied. (2) Blocking inhibitory GABAA receptor increased spontaneous activity but did not reduce desensitization. (3) Pulse trains with constant charge or excitation (based on strength-duration curves) but varying pulse width, amplitude, and shape increased the number of evoked spikes/pulse throughout the pulse train. This suggests that retinal desensitization can be partially overcome by introducing variability into each pulse.

4.
J Pain ; 20(11): 1293-1306, 2019 11.
Article in English | MEDLINE | ID: mdl-31054915

ABSTRACT

We report the development and characterization of a novel, injury-free rat model in which nociceptive sensitization after red light is observed in multiple body areas reminiscent of widespread pain in functional pain syndromes. Rats were exposed to red light-emitting diodes (RLED) (LEDs, 660 nm) at an intensity of 50 Lux for 8 hours daily for 5 days resulting in time- and dose-dependent thermal hyperalgesia and mechanical allodynia in both male and female rats. Females showed an earlier onset of mechanical allodynia than males. The pronociceptive effects of RLED were mediated through the visual system. RLED-induced thermal hyperalgesia and mechanical allodynia were reversed with medications commonly used for widespread pain, including gabapentin, tricyclic antidepressants, serotonin/norepinephrine reuptake inhibitors, and nonsteroidal anti-inflammatory drugs. Acetaminophen failed to reverse the RLED induced hypersensitivity. The hyperalgesic effects of RLED were blocked when bicuculline, a gamma-aminobutyric acid-A receptor antagonist, was administered into the rostral ventromedial medulla, suggesting a role for increased descending facilitation in the pain pathway. Key experiments were subjected to a replication study with randomization, investigator blinding, inclusion of all data, and high levels of statistical rigor. RLED-induced thermal hyperalgesia and mechanical allodynia without injury offers a novel injury-free rodent model useful for the study of functional pain syndromes with widespread pain. RLED exposure also emphasizes the different biological effects of different colors of light exposure. PERSPECTIVE: This study demonstrates the effect of light exposure on nociceptive thresholds. These biological effects of red LED add evidence to the emerging understanding of the biological effects of light of different colors in animals and humans. Understanding the underlying biology of red light-induced widespread pain may offer insights into functional pain states.


Subject(s)
Disease Models, Animal , Hyperalgesia/etiology , Light/adverse effects , Pain/etiology , Animals , Female , Hyperalgesia/physiopathology , Male , Pain/physiopathology , Rats , Rats, Sprague-Dawley
5.
ACS Chem Neurosci ; 10(3): 1716-1728, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30525440

ABSTRACT

For an affliction that debilitates an estimated 50 million adults in the United States, the current chronic pain management approaches are inadequate. The Centers for Disease Control and Prevention have called for a minimization in opioid prescription and use for chronic pain conditions, and thus, it is imperative to discover alternative non-opioid based strategies. For the realization of this call, a library of natural products was screened in search of pharmacological inhibitors of both voltage-gated calcium channels and voltage-gated sodium channels, which are excellent targets due to their well-established roles in nociceptive pathways. We discovered (-)-hardwickiic acid ((-)-HDA) and hautriwaic acid (HTA) isolated from plants, Croton californicus and Eremocarpus setigerus, respectively, inhibited tetrodotoxin-sensitive sodium, but not calcium or potassium, channels in small diameter, presumptively nociceptive, dorsal root ganglion (DRG) neurons. Failure to inhibit spontaneous postsynaptic excitatory currents indicated a preferential targeting of voltage-gated sodium channels over voltage-gated calcium channels by these extracts. Neither compound was a ligand at opioid receptors. Finally, we identified the potential of both (-)-HDA and HTA to reverse chronic pain behavior in preclinical rat models of HIV-sensory neuropathy, and for (-)-HDA specifically, in chemotherapy-induced peripheral neuropathy. Our results illustrate the therapeutic potential for (-)-HDA and HTA for chronic pain management and could represent a scaffold, that, if optimized by structure-activity relationship studies, may yield novel specific sodium channel antagonists for pain relief.


Subject(s)
Diterpenes/pharmacology , Tetrodotoxin/pharmacology , Voltage-Gated Sodium Channels/drug effects , Animals , Female , Ganglia, Spinal/metabolism , Male , Membrane Potentials/drug effects , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/metabolism
6.
JCI Insight ; 3(12)2018 06 21.
Article in English | MEDLINE | ID: mdl-29925695

ABSTRACT

Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.


Subject(s)
Disease Models, Animal , Neurofibromatosis 1 , Neurofibromin 1/metabolism , Swine , Animals , Cafe-au-Lait Spots , Exons/genetics , Fibroblasts/metabolism , GTPase-Activating Proteins/genetics , Ganglia, Spinal/metabolism , Gene Deletion , Gene Expression Regulation , Gene Knockout Techniques , Humans , Ion Channels , Learning , Male , Memory , Mutation , Neurofibroma , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Neurofibromin 1/physiology , Signal Transduction
7.
Neuroscience ; 381: 79-90, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29655575

ABSTRACT

An understudied symptom of the genetic disorder Neurofibromatosis type 1 (NF1) is chronic idiopathic pain. We used targeted editing of Nf1 in rats to provide direct evidence of a causal relationship between neurofibromin, the protein product of the Nf1 gene, and pain responses. Our study data identified a protein-interaction network with collapsin response meditator protein 2 (CRMP2) as a node and neurofibromin, syntaxin 1A, and the N-type voltage-gated calcium (CaV2.2) channel as interaction edges. Neurofibromin uncouples CRMP2 from syntaxin 1A. Upon loss/mutation of neurofibromin, as seen in patients with NF1, the CRMP2/Neurofibromin interaction is uncoupled, which frees CRMP2 to interact with both syntaxin 1A and CaV2.2, culminating in increased release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP). Our work also identified the CRMP2-derived peptide CNRP1, which uncoupled CRMP2's interactions with neurofibromin, syntaxin 1A, as well as CaV2.2. Here, we tested if CRISPR/Cas9-mediated editing of the Nf1 gene, which leads to functional remodeling of peripheral nociceptors through effects on the tetrodotoxin-sensitive (TTX-S) Na+ voltage-gated sodium channel (NaV1.7) and CaV2.2, could be affected using CNRP1, a peptide designed to target the CRMP2-neurofibromin interface. The data presented here shows that disrupting the CRMP2-neurofibromin interface is sufficient to reverse the dysregulations of voltage-gated ion channels and neurotransmitter release elicited by Nf1 gene editing. As a consequence of these effects, the CNRP1 peptide reversed hyperalgesia to thermal stimulation of the hindpaw observed in Nf1-edited rats. Our findings support future pharmacological targeting of the CRMP2/neurofibromin interface for NF1-related pain relief.


Subject(s)
Calcium Channels, N-Type/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Nerve Tissue Proteins/metabolism , Neurofibromin 1/metabolism , Animals , Chronic Pain/etiology , Chronic Pain/metabolism , Female , Gene Editing/methods , Intercellular Signaling Peptides and Proteins , Male , Neurofibromatosis 1/complications , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Transfection
8.
Br J Pharmacol ; 175(12): 2244-2260, 2018 06.
Article in English | MEDLINE | ID: mdl-28161890

ABSTRACT

BACKGROUND AND PURPOSE: N-type voltage-gated calcium (Cav 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Cav 2.2 channel antagonists are recommended as first-line treatment for neuropathic pain, calcium-current blocking gabapentinoids inadequately alleviate chronic pain symptoms and often exhibit numerous side effects. Collapsin response mediator protein 2 (CRMP2) targets Cav 2.2 channels to the sensory neuron membrane and allosterically modulates their function. A 15-amino-acid peptide (CBD3), derived from CRMP2, disrupts the functional protein-protein interaction between CRMP2 and Cav 2.2 channels to inhibit calcium influx, transmitter release and acute, inflammatory and neuropathic pain. Here, we have mapped the minimal domain of CBD3 necessary for its antinociceptive potential. EXPERIMENTAL APPROACH: Truncated as well as homology-guided mutant versions of CBD3 were generated and assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons, binding between CRMP2 and Cav 2.2 channels, whole-cell voltage clamp electrophysiology and behavioural effects in two models of experimental pain: post-surgical pain and HIV-induced sensory neuropathy induced by the viral glycoprotein 120. KEY RESULTS: The first six amino acids within CBD3 accounted for all in vitro activity and antinociception. Spinal administration of a prototypical peptide (TAT-CBD3-L5M) reversed pain behaviours. Homology-guided mutational analyses of these six amino acids identified at least two residues, Ala1 and Arg4, as being critical for antinociception in two pain models. CONCLUSIONS AND IMPLICATIONS: These results identify an antinociceptive scaffold core in CBD3 that can be used for development of low MW mimetics of CBD3. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Subject(s)
Analgesics/pharmacology , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Pain/drug therapy , Peptide Fragments/genetics , Peptide Fragments/pharmacology , Analgesics/chemistry , Animals , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Pain/metabolism , Peptide Fragments/chemistry , Rats , Rats, Sprague-Dawley
9.
Pain ; 158(12): 2301-2319, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28809766

ABSTRACT

Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disease linked to mutations of the Nf1 gene. Patients with NF1 commonly experience severe pain. Studies on mice with Nf1 haploinsufficiency have been instructive in identifying sensitization of ion channels as a possible cause underlying the heightened pain suffered by patients with NF1. However, behavioral assessments of Nf1 mice have led to uncertain conclusions about the potential causal role of Nf1 in pain. We used the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (CRISPR/Cas9) genome editing system to create and mechanistically characterize a novel rat model of NF1-related pain. Targeted intrathecal delivery of guide RNA/Cas9 nuclease plasmid in combination with a cationic polymer was used to generate allele-specific C-terminal truncation of neurofibromin, the protein encoded by the Nf1 gene. Rats with truncation of neurofibromin, showed increases in voltage-gated calcium (specifically N-type or CaV2.2) and voltage-gated sodium (particularly tetrodotoxin-sensitive) currents in dorsal root ganglion neurons. These gains-of-function resulted in increased nociceptor excitability and behavioral hyperalgesia. The cytosolic regulatory protein collapsin response mediator protein 2 (CRMP2) regulates activity of these channels, and also binds to the targeted C-terminus of neurofibromin in a tripartite complex, suggesting a possible mechanism underlying NF1 pain. Prevention of CRMP2 phosphorylation with (S)-lacosamide resulted in normalization of channel current densities, excitability, as well as of hyperalgesia following CRISPR/Cas9 truncation of neurofibromin. These studies reveal the protein partners that drive NF1 pain and suggest that CRMP2 is a key target for therapeutic intervention.


Subject(s)
Acetamides/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Neurofibromin 1/genetics , Pain/genetics , Animals , CRISPR-Cas Systems/drug effects , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Female , Ganglia, Spinal/metabolism , Genes, Neurofibromatosis 1/physiology , Lacosamide , Male , Neurons/metabolism , Pain/metabolism , Phosphorylation , Rats, Sprague-Dawley
10.
Basic Res Cardiol ; 112(5): 54, 2017 09.
Article in English | MEDLINE | ID: mdl-28756533

ABSTRACT

Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS.


Subject(s)
Coronary Artery Disease/prevention & control , Coronary Vessels/drug effects , Metabolic Syndrome/drug therapy , Mineralocorticoid Receptor Antagonists/administration & dosage , Spironolactone/administration & dosage , TRPC Cation Channels/drug effects , TRPC6 Cation Channel/drug effects , Vasoconstriction/drug effects , Animals , Calcium Signaling/drug effects , Cells, Cultured , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/physiopathology , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Disease Models, Animal , Down-Regulation , Drug Administration Schedule , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Macrophages/drug effects , Macrophages/metabolism , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Swine , Swine, Miniature , TRPC Cation Channels/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , Time Factors , Tissue Culture Techniques
11.
J Biol Chem ; 292(3): 898-911, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27920205

ABSTRACT

Transient receptor potential canonical type 5 (TRPC5) is a Ca2+-permeable cation channel that is highly expressed in the brain and is implicated in motor coordination, innate fear behavior, and seizure genesis. The channel is activated by a signal downstream of the G-protein-coupled receptor (GPCR)-Gq/11-phospholipase C (PLC) pathway. In this study we aimed to identify the molecular mechanisms involved in regulating TRPC5 activity. We report that Arg-593, a residue located in the E4 loop near the TRPC5 extracellular Gd3+ binding site, is critical for conferring the sensitivity to GPCR-Gq/11-PLC-dependent gating on TRPC5. Indeed, guanosine 5'-O-(thiotriphosphate) and GPCR agonists only weakly activate the TRPC5R593A mutant, whereas the addition of Gd3+ rescues the mutant's sensitivity to GPCR-Gq/11-PLC-dependent gating. Computer modeling suggests that Arg-593 may cross-bridge the E3 and E4 loops, forming the "molecular fulcrum." While validating the model using site-directed mutagenesis, we found that the Tyr-542 residue is critical for establishing a functional Gd3+ binding site, the Tyr-541 residue participates in fine-tuning Gd3+-sensitivity, and that the Asn-584 residue determines Ca2+ permeability of the TRPC5 channel. This is the first report providing molecular insights into the molecular mechanisms regulating the sensitivity to GPCR-Gq/11-PLC-dependent gating of a receptor-operated channel.


Subject(s)
Calcium Signaling/physiology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gadolinium/pharmacokinetics , Ion Channel Gating/physiology , Models, Biological , TRPC Cation Channels/metabolism , Type C Phospholipases/metabolism , Amino Acid Substitution , Animals , Calcium Signaling/drug effects , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Mice , Mutagenesis, Site-Directed , Mutation, Missense , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , TRPC Cation Channels/genetics , Type C Phospholipases/genetics
12.
PLoS One ; 11(2): e0148569, 2016.
Article in English | MEDLINE | ID: mdl-26844882

ABSTRACT

Voltage-gated Kv7 channels are inhibited by agonists of Gq-protein-coupled receptors, such as histamine. Recent works have provided evidence that inhibition of vascular Kv7 channels may trigger vessel contractions. In this study, we investigated how Kv7 activity modulates the histamine-induced contractions in "healthy" and metabolic syndrome (MetS) pig right coronary arteries (CAs). We performed isometric tension and immunohistochemical studies with domestic, lean Ossabaw, and MetS Ossabaw pig CAs. We found that neither the Kv7.2/Kv7.4/Kv7.5 activator ML213 nor the general Kv7 inhibitor XE991 altered the tension of CA rings under preload, indicating that vascular Kv7 channels are likely inactive in the preloaded rings. Conversely, ML213 potently dilated histamine-pre-contracted CAs, suggesting that Kv7 channels are activated during histamine applications and yet partially inhibited by histamine. Immunohistochemistry analysis revealed strong Kv7.4 immunostaining in the medial and intimal layers of the CA wall, whereas Kv7.5 immunostaining intensity was strong in the intimal but weak in the medial layers. The medial Kv7 immunostaining was significantly weaker in MetS Ossabaw CAs as compared to lean Ossabaw or domestic CAs. Consistently, histamine-pre-contracted MetS Ossabaw CAs exhibited attenuated ML213-dependent dilations. In domestic pig CAs, where medial Kv7 immunostaining intensity was stronger, histamine-induced contractions spontaneously decayed to ~31% of the peak amplitude within 4 minutes. Oppositely, in Ossabaw CAs, where Kv7 immunostaining intensity was weaker, the histamine-induced contractions were more sustained. XE991 pretreatment significantly slowed the decay rate of histamine-induced contractions in domestic CAs, supporting the hypothesis that increased Kv7 activity correlates with a faster rate of histamine-induced contraction decay. Alternatively, XE991 significantly decreased the amplitude of bradykinin-dependent dilations in pre-contracted CAs. We propose that in CAs, a decreased expression or a loss of function of Kv7 channels may lead to sustained histamine-induced contractions and reduced endothelium-dependent relaxation, both risk factors for coronary spasm.


Subject(s)
Bradykinin/metabolism , Coronary Vessels/metabolism , Histamine/metabolism , KCNQ Potassium Channels/metabolism , Muscle Contraction , Anilides/pharmacology , Animals , Anthracenes/pharmacology , Bradykinin/pharmacology , Bridged Bicyclo Compounds/pharmacology , Coronary Vessels/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Histamine/pharmacology , Isometric Contraction/drug effects , Male , Muscle Contraction/drug effects , Potassium Chloride/pharmacology , Sus scrofa , Swine , Tunica Intima/drug effects , Tunica Intima/metabolism
13.
Cardiovasc Res ; 103(4): 607-18, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24935430

ABSTRACT

AIMS: The TRPV1, transient receptor potential vanilloid type 1, agonist capsaicin is considered to be beneficial for cardiovascular health because it dilates coronary arteries through an endothelial-dependent mechanism and may slow atheroma progression. However, recent reports indicate that high doses of capsaicin may constrict coronary arterioles and even provoke myocardial infarction. Thus far, the mechanisms by which TRPV1 activation modulates coronary vascular tone remain poorly understood. This investigation examined whether there is a synergistic interplay between locally acting vasoconstrictive pro-inflammatory hormones (autacoids) and capsaicin effects in the coronary circulation. METHODS AND RESULTS: Experiments were performed in canine conduit coronary artery rings and isolated smooth muscle cells (CASMCs). Isometric tension measurements revealed that 1-10 µM capsaicin alone did not affect resting tension of coronary artery rings. In contrast, in endothelium-intact rings pre-contracted with a Gq/11-coupled FP/TP (prostaglandin F/thromboxane) receptor agonist, prostaglandin F2α (PGF2α; 10 µM), capsaicin first induced transient dilation that was followed by sustained contraction. In endothelium-denuded rings pre-contracted with PGF2α or thromboxane analogue U46619 (1 µM, a TP receptor agonist), capsaicin induced only sustained contraction. Blockers of the TP receptor or TRPV1 significantly inhibited capsaicin effects, but these were still observed in the presence of 50 µM nifedipine and 70 mM KCl. Capsaicin also potentiated 20 mM KCl-induced contractions. Fluorescence imaging experiments in CASMCs revealed that the Gq/11-phospholipase C (PLC)-protein kinase C (PKC) and Ca(2+)-PLC-PKC pathways are likely involved in sensitizing CASMC TRPV1 channels. CONCLUSION: Capsaicin alone does not cause contractions in conduit canine coronary artery; however, pre-treatment with pro-inflammatory prostaglandin-thromboxane agonists may unmask capsaicin's vasoconstrictive potential.


Subject(s)
Capsaicin/pharmacology , Coronary Vessels/drug effects , Muscle, Smooth, Vascular/blood supply , Spasm/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Calcium/metabolism , Capsaicin/administration & dosage , Coronary Vessels/metabolism , Dogs , Male , Myocytes, Smooth Muscle/drug effects , TRPV Cation Channels/metabolism , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects
14.
Cells ; 3(2): 247-57, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24709960

ABSTRACT

Transient receptor potential canonical 6 (TRPC6) is a cation selective, DAG-regulated, Ca2+-permeable channel activated by the agonists of Gq-protein-coupled heptahelical receptors. Dysfunctions of TRPC6 are implicated in the pathogenesis of various cardiovascular and kidney conditions such as vasospasm and glomerulosclerosis. When stimulated by agonists of the histamine H1 receptor (H1R), TRPC6 activity decays to the baseline despite the continuous presence of the agonist. In this study, we examined whether H1R desensitization contributes to regulating the decay rate of TRPC6 activity upon receptor stimulation. We employed the HEK expression system and a biosensor allowing us to simultaneously detect the changes in intracellular diacylglycerol (DAG) and Ca2+ concentrations. We found that the histamine-induced DAG response was biphasic, in which a transient peak was followed by maintained elevated plateau, suggesting that desensitization of H1R takes place in the presence of histamine. The application of PKC inhibitor Gö6983 slowed the decay rate of intracellular DAG concentration. Activation of the mouse H1R mutant lacking a putative PKC phosphorylation site, Ser399, responsible for the receptor desensitization, resulted in a prolonged intracellular DAG increase and greater Mn2+ influx through the TRPC6 channel. Thus, our data support the hypothesis that PKC-dependent H1R phosphorylation leads to a reduced production of intracellular DAG that contributes to TRPC6 activity regulation.

16.
Biochim Biophys Acta ; 1823(7): 1163-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22575459

ABSTRACT

The aim of the present study is to test the hypothesis that insulin-like-growth factor-1 (IGF-1) plays a role in the regulation of basolateral Cl channels in the thick ascending limb (TAL). The patch-clamp experiments demonstrated that application of IGF-I or insulin inhibited the basolateral 10-pS Cl channels. However, the concentration of insulin required for the inhibition of the Cl channels by 50% (K(1/2)) was ten times higher than those of IGF-1. The inhibitory effect of IGF-I on the 10-pS Cl channels was blocked by suppressing protein tyrosine kinase or by blocking phosphoinositide 3-kinase (PI3K). In contrast, inhibition of phospholipase C (PLC) failed to abolish the inhibitory effect of IGF-1 on the Cl channels in the TAL. Western blot analysis demonstrated that IGF-1 significantly increased the phosphorylation of phospholipid-dependent kinase (PDK) at serine residue 241 (Ser(241)) and AKT at Ser(473) in the isolated medullary TAL. Moreover, inhibition of PI3K with LY294002 abolished the effect of IGF-1 on the phosphorylation of PDK and AKT. The notion that the effect of IGF-1 on the 10-pS Cl channels was induced by stimulation of PDK-AKT-mTOR pathway was further suggested by the finding that rapamycin completely abolished the effect of IGF-1 on the 10-pS Cl channels in the TAL. We conclude that IGF-1 inhibits the basolateral Cl channels by activating PI3K-AKT-mTOR pathways. The inhibitory effect of IGF-1 on the Cl channels may play a role in ameliorating the ischemia-induced renal injury through IGF-1 administration.


Subject(s)
Chloride Channels/metabolism , Insulin-Like Growth Factor I/pharmacology , Ion Channel Gating/drug effects , Loop of Henle/drug effects , Loop of Henle/physiology , Animals , Blotting, Western , Chromones/pharmacology , Female , Insulin/pharmacology , Male , Models, Biological , Morpholines/pharmacology , Rats , Rats, Sprague-Dawley
17.
Biochim Biophys Acta ; 1823(2): 273-81, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22050992

ABSTRACT

We used the patch-clamp technique to study the effect of changing the external Ca2+ on the basolateral 50-pS K channel in the thick ascending limb (TAL) of rat kidney. Increasing the external Ca2+ concentration from 1 mM to 2 or 3 mM inhibited the basolateral 50-pS K channels while decreasing external Ca2+ to 10 µM increased the 50-pS K channel activity. The effect of the external Ca2+ on the 50-pS K channels was observed only in cell-attached patches but not in excised patches. Moreover, the inhibitory effect of increasing external Ca2+ on the 50-pS K channels was absent in the presence of NPS2390, an antagonist of Ca2+-sensing receptor (CaSR), suggesting that the inhibitory effect of the external Ca2+ was the result of stimulation of the CaSR. Application of the membrane-permeable cAMP analog increased the 50-pS K channel activity but did not block the effect of raising the external Ca2+ on the K channels. Neither inhibition of phospholipase A2 (PLA2) nor suppression of cytochrome P450-ω-hydroxylation-dependent metabolism of arachidonic acid was able to abolish the effect of raising the external Ca2+ on the 50-pS K channels. In contrast, inhibition of phospholipase C (PLC) or blocking protein kinase C (PKC) completely abolished the inhibition of the basolateral 50-pS K channels induced by raising the external Ca2+. We conclude that the external Ca2+ concentration plays an important role in the regulation of the basolateral K channel activity in the TAL and that the effect of the external Ca2+ is mediated by the CaSR which stimulates PLC-PKC pathways. The regulation of the basolateral K channels by the CaSR may be the mechanism by which extracellular Ca2+ level modulates the reabsorption of divalent cations.


Subject(s)
Calcium/metabolism , Kidney/anatomy & histology , Kidney/metabolism , Potassium Channels/metabolism , Receptors, Calcium-Sensing/metabolism , Adamantane/analogs & derivatives , Adamantane/metabolism , Animals , Arachidonic Acids/metabolism , Cell Membrane Permeability/physiology , Estrenes/metabolism , Female , Male , Patch-Clamp Techniques , Phosphodiesterase Inhibitors/metabolism , Potassium Channel Blockers/metabolism , Pyrrolidinones/metabolism , Quinoxalines/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Calcium-Sensing/antagonists & inhibitors
18.
Am J Physiol Renal Physiol ; 300(4): F906-13, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21209003

ABSTRACT

The basolateral 50-pS K channels are stimulated by a cAMP-dependent pathway and inhibited by cytochrome P-450-omega-hydroxylase-dependent metabolism of arachidonic acid (AA) in the rat thick ascending limb (TAL). We now used the patch-clamp technique to examine whether stimulation of adenosine A(2a) receptor modulates the inhibitory effect of AA on the basolateral 50-pS K channels in the medullary TAL. Stimulation of adenosine A(2a) receptor with CGS-21680 or inhibition of phospholipase A2 (PLA2) with AACOCF3 increased the 50-pS K channel activity in the TAL. Western blot demonstrated that application of CGS-21680 decreased the phosphorylation of PLA(2) at serine residue 505, an indication of inhibiting PLA2 activity. In the presence of CGS-21680, inhibition of PLA2 had no further effect on the basolateral 50-pS K channels. The possibility that CGS-21680-induced stimulation of the basolateral 50-pS K channels was partially achieved by inhibition of PLA2 in the TAL was also supported by the observation that CGS-21680 had no additional effect in the presence of AACOCF3. Moreover, stimulation of adenosine A(2a) receptor with CGS-21680 also abolished the inhibitory effect of AA and 20-hydroxyeicosatetraenoic acid (20-HETE) on the 50-pS K channels. The effect of CGS-21680 on AA and 20-HETE-mediated inhibition of the 50-pS K channels was mediated by cAMP because application of membrane-permeable cAMP analog, dibutyryl-cAMP, not only increased the 50-pS K channel activity but also abolished the inhibitory effect of AA and 20-HETE. We conclude that stimulation of adenosine A(2a) receptor increased the 50-pS K channel activity in the TAL, an effect that is achieved by suppression of PLA2 activity and 20-HETE-induced inhibition.


Subject(s)
Arachidonic Acid/pharmacology , Loop of Henle/metabolism , Potassium Channels/metabolism , Receptor, Adenosine A2A/metabolism , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Animals , Arachidonic Acids/pharmacology , Blotting, Western , Enzyme Inhibitors/pharmacology , Female , Loop of Henle/drug effects , Male , Membrane Potentials/drug effects , Patch-Clamp Techniques , Phenethylamines/pharmacology , Rats , Rats, Sprague-Dawley
19.
Kidney Int ; 74(4): 478-85, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18496512

ABSTRACT

To study the inhibition of the inwardly rectifying basolateral 50 pS potassium channels by PGE(2) we performed patch-clamp studies on the basolateral membrane of the rat kidney thick ascending limb. PGE(2)'s effect was mimicked by the selective EP1- and EP3-receptor agonist, sulprostone, but was prevented by inhibiting protein kinase-C with calphostin-C. The mitogen-activated protein kinase inhibitor PD98059 (ERK) or SB203580 (p38) increased basal channel activity; however, while neither alone prevented the inhibitory effect of PGE(2), but using both of them together completely abolished PGE(2)'s effect on channel activity. Treatment with PGE(2) stimulated phosphorylation of both p38 and ERK in primary cultures of medullary thick ascending limb cells. The PGE(2)-mediated mitogen-activated protein kinase activation was not affected by indomethacin, but was completely blocked by calphostin-C. These studies show that inhibition of basolateral 50 pS potassium channels by PGE(2) is mediated by protein kinase-C, which in turn stimulates mitogen-activated protein kinases in the thick ascending limb of the rat kidney.


Subject(s)
Dinoprostone/pharmacology , Kidney Cortex/metabolism , Kidney/drug effects , Kidney/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Animals , Cells, Cultured , Dinoprostone/metabolism , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Female , Flavonoids/pharmacology , Imidazoles/pharmacology , Kidney Cortex/cytology , Kidney Cortex/drug effects , Male , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Biological , Naphthalenes/pharmacology , Patch-Clamp Techniques , Phosphorylation/drug effects , Potassium Channels, Inwardly Rectifying/drug effects , Protein Kinase C/antagonists & inhibitors , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E, EP3 Subtype , Specific Pathogen-Free Organisms , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Am J Physiol Renal Physiol ; 293(1): F299-305, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17475899

ABSTRACT

We used the patch-clamp technique to examine the effect of adenosine on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. A 50-pS inwardly rectifying K channel was detected in the basolateral membrane, and the channel activity was decreased by hyperpolarization. Application of adenosine (10 microM) increased the activity of basolateral 50 pS K channels, defined by NP(o), from 0.21 to 0.41. The effect of adenosine on the 50 pS K channels was mimicked by cyclohexyladenosine (CHA), which increased channel activity by a dose-dependent manner. However, inhibition of the A1 adenosine receptor with 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX) failed to block the effect of CHA. In contrast, application of 8-(3-chlorostyryl) caffeine (CSC), an A2 adenosine antagonist, abolished the stimulatory effect of CHA. The possibility that the effect of adenosine and adenosine analog on the basolateral 50 pS K channel was the result of activation of the A2 adenosine receptor was also suggested by the observation that application of CGS-21680, a selected A(2A) adenosine receptor agonist, increased the channel activity. Also, inhibition of PKA with N-[2-(methylamino)ethyl]-5-isoquinoline sulfonamide-2HC1 abolished the stimulatory effect of CHA on the basolateral 50 pS K channel. Moreover, addition of the membrane-permeable cAMP analog increases the activity of 50 pS K channels. We conclude that adenosine activates the 50 pS K channel in the basolateral membrane of the TAL and the stimulatory effect is mainly mediated by a PKA-dependent pathway via the A2 adenosine receptor in the TAL.


Subject(s)
Adenosine/pharmacology , Kidney/metabolism , Potassium Channels/agonists , Adenosine/analogs & derivatives , Adenosine A2 Receptor Antagonists , Adenylyl Cyclases/metabolism , Algorithms , Animals , Bucladesine/pharmacology , Caffeine/analogs & derivatives , Caffeine/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Female , Kidney/drug effects , Male , Patch-Clamp Techniques , Phenethylamines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Adenosine A2/drug effects , Stimulation, Chemical , Xanthines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...