Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Biosens Bioelectron ; 259: 116396, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38772247

ABSTRACT

Electrochemical biosensors hold promise for advanced analytical applications in modern life analysis due to their miniaturization and cost-effectiveness. Nevertheless, their implementation in complex biological systems necessitates overcoming challenges related to timeliness, sensitivity, and interference resistance. Here, we developed a novel DNA hydrogel three-dimensional electron transporter through liquid-colloid-solid assembly, integrating electronic mediators and employing porous electrode covers with 3D printing technology. Our approach facilitated the fabrication of a high-performance electrochemical sensor for small molecule detection, leveraging target-specific aptamers and catalytic hairpin assembly (CHA) elements within the DNA hydrogel, which exhibited outstanding selectivity, sensitivity, and universality, achieving detection limits of 0.047 nM for kanamycin and 2.67 pM for ATP. Furthermore, this sensor could detect kanamycin in real samples, demonstrating good accuracy and robust anti-interference capabilities in human serum. Our work not only possesses substantial application value in clinical sample analysis but also represents a breakthrough in traditional strategies, thereby contributing to advancements in the application of electrochemical biosensors for life analysis.

3.
Genet Med ; : 101169, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38785164

ABSTRACT

PURPOSE: Pathogenic variants in Kinesin Family Member 1A (KIF1A) are associated with KIF1A-associated neurological disorder (KAND). We report the clinical phenotypes and correlate genotypes of individuals with KAND. METHODS: Medical history and adaptive function were assessed longitudinally. In-person evaluations included neurological, motor, ophthalmologic and cognitive assessments. RESULTS: We collected online data on 177 individuals. Fifty-seven individuals were also assessed in-person. Most individuals had de novo heterozygous missense likely pathogenic/pathogenic KIF1A variants. The most common characteristics were hypotonia, spasticity, ataxia, seizures, optic nerve atrophy, cerebellar atrophy, and cognitive impairment. Mean Vineland Adaptive Behavior Composite score (VABS-ABC) was low (M=62.9, SD=19.1). The mean change in VABS-ABC over time was -3.1 (SD=7.3). The decline in VABS-ABC was associated with the age at first assessment and abnormal electroencephalogram/seizure. There was a positive correlation between Evolutionary Scale Model (ESM) score for the variants and final VABS-ABC (p=0.003). Abnormal electroencephalogram/seizure, neuroimaging result, and ESM explain 34% of the variance in final VABS-ABC (p<0.001). CONCLUSION: In-person assessment confirmed caregiver report and identified additional visual deficits. Adaptive function declined over time consistent with both the neurodevelopmental and neurodegenerative nature of the condition. Using ESM score assists in predicting phenotype across a wide range of unique variants.

4.
J Hazard Mater ; 472: 134450, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38701726

ABSTRACT

Spontaneous natural succession in metal mine tailings is fundamental to the rehabilitation of bare tailing. Here, an abandoned rare earth element (REE) mine tailing with spontaneous colonisation by pioneer plants with different functional traits was selected. Soil nutrient cycling, fertility, organic matter decomposition as well as underground organismal communities and their multitrophic networks were investigated. Compared with the bare tailing, the colonisation with Lycopodium japonicum, Miscanthus sinensis, and Dicranopteris dichotoma increased soil multifunction by 222%, 293%, and 525%, respectively. This was accompanied by significant changes in soil bacterial and protistan community composition and increased soil multitrophic network complexity. Rhizospheres of different plant species showed distinct microbial community composition compared to that of bare tailing. Some WPS-2, Chloroflexi, and Chlorophyta were mainly present in the bare tailing, while some Proteobacteria and Cercozoa were predominantly seen in the rhizosphere. Pearson correlation and Random Forest revealed the biotic factors driving soil multifunction. Structural equation modelling further revealed that pioneer plants improved soil multifunction primarily by decreasing the microbial biodiversity and increasing the multitrophic network complexity. Overall, this highlights the importance of subterrestrial organisms in accelerating soil rehabilitation during natural succession and provides options for the ecological restoration of degraded REE mining areas.

5.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38460143

ABSTRACT

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Subject(s)
Food Chain , Metals, Rare Earth , Herbivory , Plants , Soil , Lactuca
6.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474246

ABSTRACT

The DA1-like gene family plays a crucial role in regulating seed and organ size in plants. The DA1 gene family has been identified in several species but has not yet been reported in sweet potatoes. In this study, nine, eleven, and seven DA1s were identified in cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid wild relatives, I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively. The DA1 genes were classified into three subgroups based on their phylogenetic relationships with Arabidopsis thaliana and Oryza sativa (rice). Their protein physiological properties, chromosomal localization, phylogenetic relationships, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The qRT-PCR results showed that the expression levels of four genes, IbDA1-1, IbDA1-3, IbDA1-6, and IbDA1-7, were higher in the sweet potato leaves than in the roots, fiber roots, and stems. In our study, we provide a comprehensive comparison and further the knowledge of DA1-like genes in sweet potatoes, and provide a theoretical basis for functional studies.


Subject(s)
Ipomoea batatas , Ipomoea batatas/genetics , Phylogeny , Diploidy , Genome, Plant , Genes, Plant , Gene Expression Regulation, Plant
7.
Plant Divers ; 46(1): 116-125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343599

ABSTRACT

Parasitic plants and their hosts communicate through haustorial connections. Nutrient deficiency is a common stress for plants, yet little is known about whether and how host plants and parasites communicate during adaptation to such nutrient stresses. In this study, we used transcriptomics and proteomics to analyze how soybean (Glycine max) and its parasitizing dodder (Cuscuta australis) respond to nitrate and phosphate deficiency (-N and -P). After -N and -P treatment, the soybean and dodder plants exhibited substantial changes of transcriptome and proteome, although soybean plants showed very few transcriptional responses to -P and dodder did not show any transcriptional changes to either -N or -P. Importantly, large-scale interplant transport of mRNAs and proteins was detected. Although the mobile mRNAs only comprised at most 0.2% of the transcriptomes, the foreign mobile proteins could reach 6.8% of the total proteins, suggesting that proteins may be the major forms of interplant communications. Furthermore, the interplant mobility of macromolecules was specifically affected by the nutrient regimes and the transport of these macromolecules was very likely independently regulated. This study provides new insight into the communication between host plants and parasites under stress conditions.

8.
Mar Pollut Bull ; 199: 116019, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184859

ABSTRACT

In the precent study, the microplastics (MPs) pollution level was evaluated in diverse environmental samples from the Yellow River Delta. The results indicated that the abundance of MPs in water, sediment and soil samples ranged from 0.50 to 7.83 items·L-1, 200 to 4200 items·kg-1, and 100 to 1400 items·kg-1, respectively. Film form of MPs was dominant in water, while fiber MPs were dominant in both sediment and soil samples. In all samples, most MPs were < 1 mm in size. White was the main color in water, black was the main color in sediment and soil samples. The most common MPs type was polyethylene (33 %) in water, while rayon accounted for the majority of MPs in sediment (42 %) and soil (70 %) samples. The redundancy analysis results showed that MPs in water and sediment were more affected by water quality, while soil MPs were easily affected by landscape pattern.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Plastics , Rivers , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , China , Soil
9.
J Biomol Struct Dyn ; 42(6): 3010-3018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37345529

ABSTRACT

Protein kinase, membrane-associated tyrosine/threonine 1 (PKMYT1), a member of the WEE family and responsible for the regulation of CDK1 phosphorylation, has been considered a promising therapeutic target for cancer therapy. However, the highly structural conservation of the ATP-binding sites of the WEE family poses a challenge to the design of selective inhibitors for PKMYT1. Here, molecular docking, multiple microsecond-length molecular dynamics (MD) simulations and end-point free energy calculations were performed to uncover the molecular mechanism of the binding selectivity of RP-6306 toward PKMYT1 over its highly homologous kinase WEE1. The binding specificity of RP-6306 reported in previous experimental bioassays was clarified by MD simulations and binding free energy calculations. Further, the binding free energy prediction indicated that the binding selectivity of RP-6306 largely derived from the difference in the protein-ligand electrostatic interactions. The per-residue free energy decomposition suggested that the non-conserved gatekeeper residue in the hinge domain of PKMYT1/WEE1, Thr187/Asn376, is the critical factor responsible for the binding selectivity of RP-6306 toward PKMYT1. In addition, a water-mediated hydrogen bond was formed between RP-6306 and Gly191 at the hinge domain in the PKMYT1/RP-6306 complex, which was absent in the WEE1/RP-6306 complex. This study is expected to offer useful information for the design of more potent and selective PKMYT1 inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Molecular Docking Simulation , Phosphorylation , Binding Sites
10.
Angew Chem Int Ed Engl ; 63(7): e202311309, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38140920

ABSTRACT

Nanomaterial-based in vivo tumor imaging and therapy have attracted extensive attention; however, they suffer from the unintelligent "always ON" or single-parameter responsive signal output, substantial off-target effects, and high cost. Therefore, achieving in vivo easy-to-read tumor imaging and precise therapy in a multi-parameter responsive and intelligent manner remains challenging. Herein, an intelligent DNA nanoreactor (iDNR) was constructed following the "AND" Boolean logic algorithm to address these issues. iDNR-mediated in situ deposition of photothermal substance polydopamine (PDA) can only be satisfied in tumor tissues with abundant membrane protein biomarkers "AND" hydrogen peroxide (H2 O2 ). Therefore, intelligent temperature-based in vivo easy-to-read tumor imaging is realized without expensive instrumentation, and its diagnostic performance matches with that of flow cytometry, and photoacoustic imaging. Moreover, precise photothermal therapy (PTT) of tumors could be achieved via intelligent heating of tumor tissues. The precise PTT of primary tumors in combination with immune checkpoint blockade (ICB) therapy suppresses the growth of distant tumors and inhibits tumor recurrence. Therefore, highly programmable iDNR is a powerful tool for intelligent biomedical applications.


Subject(s)
Nanoparticles , Nanostructures , Neoplasms , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/pathology , Phototherapy/methods , Nanotechnology , Cell Line, Tumor , Tumor Microenvironment
11.
Biosens Bioelectron ; 247: 115919, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38113693

ABSTRACT

Bioreactors with environment responsiveness for smart detection has attracted widespread interest. Bioreactors that operate in liquid have excellent reaction speed and sensitivity, and those that operate at a solid interface have unique portability and stability. However, bioreactors that can simultaneously take advantage of both properties are still limited. Here, we developed a metal-organic framework (MOF) integrated hydrogel bioreactor that can accommodate both solid and liquid properties by using a hydrogel as a quasi-liquid medium. To enhance the stability and intelligence of the hydrogel bioreactor, we have opted for the utilization of europium metal-organic framework (Eu-MOF) as the optical output to withstand long-term storage challenges, and DNA as the highly programmable substance for intelligent target response. On this basis, smart detection of metal ions and biological micro-molecules have been achieved. Notably, this quasi-liquid hydrogel bioreactor has effectively tackled the intrinsic issues of inadequate dispersion stability of Eu-MOF in liquid systems and poor stability of DNA against environmental interference. Moreover, this MOF integrated hydrogel bioreactor has been applied to the construction of a portable hydrogel bioreactor, which enables platform-free and arrayed target detection via a smartphone, providing a new perspective for further promoting the application of quasi-liquid hydrogel bioreactors and intelligent nanobiological sensors.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Hydrogels , Metals , Bioreactors , Ions , DNA
12.
Microb Ecol ; 87(1): 23, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38159169

ABSTRACT

Anoplophora glabripennis (Asian longhorned beetle) is a wood-boring pest that can inhabit a wide range of healthy deciduous host trees in native and non-native habitats. Lignocellulose degradation plays a major role in the acquisition of nutrients during the growth and development of A. glabripennis larvae. In this study, the lignocellulose degradation capacity of Fusarium solani, a fungal symbiont of A. glabripennis, was investigated in fermentation culture and in four host tree species. The impact of F. solani on larval growth and survival parameters was assessed. Fermentation culture demonstrated continuous and stable production of lignocellulolytic enzymes over the cultivation period. Furthermore, F. solani was able to degrade host tree lignocellulose, as shown by decreased soluble sugar and cellulose contents and an increase in protein content. No significant differences in larval survival were observed in larvae fed with or without F. solani. However, weight and head capsule width were higher in larvae fed on F. solani, and gut lignocellulose activities were elevated in fed larvae. Our results indicate a role for F. solani in the predigestion of lignocellulose during the colonization and parasitic stages of A. glabripennis larval development, and also the F. solani an important symbiotic partner to A. glabripennis, lowering barriers to colonization and development in a range of habitats.


Subject(s)
Coleoptera , Fusarium , Animals , Larva/microbiology , Coleoptera/microbiology
13.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894482

ABSTRACT

Two new indole diterpene derivatives, 5S-hydroxy-ß-aflatrem (1) and 14R-hydroxy-ß-aflatrem (2), along with one known analogue, 14-(N,N-dimethl-L-valyloxy)paspalinine (3), were isolated from the fermentation broth of the fungus Aspergillus sp. PQJ-1 derived from Sphagneticola trilobata. The structures of the new compounds were elucidated from spectroscopic data and ECD spectroscopic analyses. All the compounds (1-3) were evaluated for their cytotoxicity against A549, Hela, Hep G2, and MCF-7 cell lines. Compounds 1 and 2 exhibited selective inhibition against Hela cells. Further studies showed that 1 significantly induced apoptosis and suppressed migration and invasion in Hela cells. Moreover, 1 could up-regulate pro-apoptotic genes BAX and Caspase-3 and down-regulate anti-apoptotic genes Bcl-xL and XIXP.


Subject(s)
Antineoplastic Agents , Asteraceae , Diterpenes , Humans , HeLa Cells , Aspergillus/chemistry , Antineoplastic Agents/pharmacology , Fungi , Indoles/chemistry , Diterpenes/chemistry , Molecular Structure
14.
Front Nutr ; 10: 1253803, 2023.
Article in English | MEDLINE | ID: mdl-37899834

ABSTRACT

Background: Cardiovascular diseases persist as the primary cause of mortality in the global population. Hypertension (HTN) is widely recognized as one of the most crucial risk factors contributing to severe cardiovascular conditions. In recent years, a growing body of research has highlighted the therapeutic potential of gut microbiota (GM) in addressing cardiovascular diseases, particularly HTN. Consequently, unraveling and synthesizing the connections between GM and HTN, key research domains, and the underlying interaction mechanisms have grown increasingly vital. Methods: We retrieved articles related to GM and HTN from 2014 to 2023 using Web of Science. Bibliometric tools employed in this analysis include CiteSpace and VOSviewer. Result: From 2014 to 2023, we identified 1,730 related articles. These articles involved 88 countries (regions) and 9,573 authors. The articles were published in 593 journals, with 1000 references exhibiting co-occurrence more than 10 times. The number of studies in this field has been increasing, indicating that it remains a research hotspot. We expect this field to continue gaining attention in the future. China leads in the number of published articles, while the United States boasts the most extensive international collaborations, signifying its continued prominence as a research hub in this domain. Tain You-Lin, Hsu Chien-Ning, Raizada Mohan K, and Yang Tao are among the authors with the highest publication volume. Publications in this field are frequently found in nutrition, cardiovascular, and molecular biology journals. The most frequently occurring keywords include metabolic syndrome, cardiovascular disease, inflammation, short-chain fatty acids, trimethylamine N-oxide, chronic kidney disease, heart failure, and high-salt diet. Conclusion: The relationship between GM and HTN is presently one of the most active research areas. By employing bibliometric tools, we analyzed critical and innovative articles in this field to provide an objective summary of the primary research directions, such as the relationship between GM and HTN, GM metabolites, high-salt diet, the developmental origins of health and disease, obstructive sleep apnea-Induced hypertension and antihypertensive peptide. Our analysis aims to offer researchers insights into hotspots and emerging trends in the field of GM and HTN for future research reference.

15.
J Hazard Mater ; 460: 132487, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37690204

ABSTRACT

Extensive rare earth element (REE) mining activities pose threats to agricultural soils surrounding the mining areas. Here, low and high REE-contaminated soils from farmlands around mine tailings were remediated with hydroxyapatite. A toxicokinetic approach was applied to assess whether the use of hydroxyapatite reduced the bioavailability of REEs and thus inhibited their accumulation in the terrestrial organism Enchytraeus crypticus. Our results showed that addition of hydroxyapatite increased soil pH, DOC and anion contents. CaCl2-extractable REE concentrations significantly decreased, indicating the stabilization by hydroxyapatite. The influence of hydroxyapatite on the REE accumulation in enchytraeids was quantified by fitting a toxicokinetic model to dynamic REE body concentrations. The estimated uptake (Ku) and elimination rate constants (Ke), and bioaccumulation factor (BAF) for REEs were in the range of 0.000821 - 0.122 kgsoil/kgworm day-1, 0.0224 - 0.136 day-1, and 0.00135 - 1.96, respectively. Both Ku and BAF were significantly reduced by over 80% by hydroxyapatite addition, confirming the decreased REE bioavailability. Low atomic number REEs had higher BAFs in slightly contaminated soil, suggesting a higher bioaccumulation potential of light REEs in soil organisms. Overall, chemical stabilization with amendments can attenuate the bioavailability of REEs and reduce the potential ecological risk of contaminated agricultural soils near REE mining areas.


Subject(s)
Metals, Rare Earth , Oligochaeta , Animals , Soil , Toxicokinetics , Agriculture , Bioaccumulation , Durapatite , Metals, Rare Earth/toxicity
16.
Food Chem Toxicol ; 179: 113998, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37604300

ABSTRACT

Formaldehyde (FA), which is known as an air pollutant, has been proven to induce male infertility. However, the underlying mechanism of FA-induced male infertility remains elusive. In this study, 24 male SD rats were exposed to different levels of FA (0, 0.5, 2.46, and 5 mg/m3) for eight consecutive weeks. Through HE staining and sperm smear, we observed that FA exposure resulted in spermatogenic injury and the sperm quality decreased in rats. The qRT-PCR and Western blot analysis further revealed that GRPR was down-regulated in testicular tissues of FA-exposed rats as well as primary spermatogenic cells. Meanwhile, ZDOCK uncovered an interaction between GRPR and PLCß. In addition, the CCK8, Fluo 3-AM and Flow cytometry results showed that FA exposure suppressed the expression of GRPR, PLCß and IP3R, consequently reducing the Ca2+ concentration in spermatogenic cells, inducing apoptosis and inhibiting proliferation of spermatogenic cells. Moreover, rescue experiments confirmed that promoting GRPR could improve intracellular Ca2+ concentration by upregulating PLCß and IP3R, partially reducing the apoptosis and promoting the proliferation of FA-treated spermatogenic cells. These findings revealed that GRPR participates in spermatogenesis through Ca2+ mediated by the PLCß/IP3R signaling pathway in FA-exposed rats.


Subject(s)
Formaldehyde , Infertility, Male , Semen , Spermatogenesis , Animals , Male , Rats , Down-Regulation , Formaldehyde/adverse effects , Formaldehyde/toxicity , Phospholipase C beta , Rats, Sprague-Dawley , Signal Transduction , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Receptors, Bombesin/metabolism
17.
Mar Life Sci Technol ; 5(3): 359-372, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37637256

ABSTRACT

In mammals, mitofusin 2 (MFN2) is involved in mitochondrial fusion, and suppresses the virus-induced RIG-I-like receptor (RLR) signaling pathway. However, little is known about the function of MFN2 in non-mammalian species. In the present study, we cloned an MFN2 ortholog (LcMFN2) in large yellow croaker (Larimichthys crocea). Phylogenetic analysis showed that MFN2 emerged after the divergence of amphioxus and vertebrates. The protein sequences of MFN2 were well conserved from fish to mammals. LcMFN2 was expressed in all the tissues/organs examined at different levels, and its expression was upregulated in response to poly(I:C) stimulation. Overexpression of LcMFN2 inhibited MAVS-induced type I interferon (IFN) promoter activation and antiviral gene expression. In contrast, knockdown of endogenous LcMFN2 enhanced poly(I:C) induced production of type I IFNs. Additionally, LcMFN2 enhanced K48-linked polyubiquitination of MAVS, promoting its degradation. Also, overexpression of LcMFN2 impaired the cellular antiviral response, as evidenced by the increased expression of viral genes and more severe cytopathic effects (CPE) in cells infected with spring viremia of carp virus (SVCV). These results indicated that LcMFN2 inhibited type I IFN response by degrading MAVS, suggesting its negative regulatory role in cellular antiviral response. Therefore, our study sheds a new light on the regulatory mechanisms of the cellular antiviral response in teleosts. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00189-8.

18.
Biosens Bioelectron ; 237: 115502, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37423067

ABSTRACT

Conventional pathogen detection strategies based on the molecular structure or chemical characteristics of biomarkers can only provide the "physical abundance" of microorganisms, but cannot reflect the "biological effect abundance" in the true sense. To address this issue, we report an erythrocyte membrane-encapsulated biomimetic sensor cascaded with CRISPR-Cas12a (EMSCC). Taking hemolytic pathogens as the target model, we first constructed an erythrocyte membrane-encapsulated biomimetic sensor (EMS). Only hemolytic pathogens with biological effects can disrupt the erythrocyte membrane (EM), resulting in signal generation. Then the signal was amplified by cascading CRISPR-Cas12a, and more than 6.67 × 104-fold improvement in detection sensitivity compared to traditional erythrocyte hemolysis assay was achieved. Notably, compared with polymerase chain reaction (PCR) or enzyme linked immunosorbent assay (ELISA)-based quantification methods, EMSCC can sensitively respond to the pathogenicity change of pathogens. For the detection of simulated clinical samples based on EMSCC, we obtained an accuracy of 95% in 40 samples, demonstrating its potential clinical value.


Subject(s)
Biomimetics , Biosensing Techniques , Humans , Hemolysis , Biological Assay , Enzyme-Linked Immunosorbent Assay , CRISPR-Cas Systems
19.
Foods ; 12(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37444265

ABSTRACT

Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.

20.
BMC Complement Med Ther ; 23(1): 178, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264383

ABSTRACT

BACKGROUND: Taohong Siwu Decoction (THSWD) is a widely used traditional Chinese medicine (TCM) prescription in the treatment of ischemic stroke. There are thousands of chemical components in THSWD. However, the key functional components are still poorly understood. This study aimed to construct a mathematical model for screening of active ingredients in TCM prescriptions and apply it to THSWD on ischemic stroke. METHODS: Botanical drugs and compounds in THSWD were acquired from multiple public TCM databases. All compounds were initially screened by ADMET properties. SEA, HitPick, and Swiss Target Prediction were used for target prediction of the filtered compounds. Ischemic stroke pathological genes were acquired from the DisGeNet database. The compound-target-pathogenic gene (C-T-P) network of THSWD was constructed and then optimized using the multiobjective optimization (MOO) algorithm. We calculated the cumulative target coverage score of each compound and screened the top compounds with 90% coverage. Finally, verification of the neuroprotective effect of these compounds was performed with the oxygen-glucose deprivation and reoxygenation (OGD/R) model. RESULTS: The optimized C-T-P network contains 167 compounds, 1,467 predicted targets, and 1,758 stroke pathological genes. And the MOO model showed better optimization performance than the degree model, closeness model, and betweenness model. Then, we calculated the cumulative target coverage score of the above compounds, and the cumulative effect of 39 compounds on pathogenic genes reached 90% of all compounds. Furthermore, the experimental results showed that decanoic acid, butylphthalide, chrysophanol, and sinapic acid significantly increased cell viability. Finally, the docking results showed the binding modes of these four compounds and their target proteins. CONCLUSION: This study provides a methodological reference for the screening of potential therapeutic compounds of TCM. In addition, decanoic acid and sinapic acid screened from THSWD were found having potential neuroprotective effects first and verified with cell experiments, however, further in vitro and in vivo studies are needed to explore the precise mechanisms involved.


Subject(s)
Drugs, Chinese Herbal , Ischemic Stroke , Neuroprotective Agents , Humans , Ischemic Stroke/drug therapy , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional/methods , Neuroprotective Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...