Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 458: 139422, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38959797

ABSTRACT

The lipids and volatile compounds in pork from different parts, including the loin, belly, shoulder and hind leg were analyzed by triple quadrupole tandem time-of-flight mass spectrometer (Q-TOF/MS) and gas chromatography-olfactometry-mass spectrometry (GC-O-MS), respectively. Partial least squares regression (PLSR) and Pearson correlation analysis were utilized to establish the relationship between the lipids and volatile compounds. A total of 8 main flavour substances, 38 main phospholipids, and 32 main fatty acids were identified. The results showed that the key flavour compounds were mainly derived from unsaturated fatty acids and phospholipids containing unsaturated fatty acids, including oleic acid (C18:2n6c), α-Linolenic acid (C18:3n3), arachidonic acid (C20:4n6), PE O (18:1/20:4), PE O (18:2/20:4), and PE O (18:2/18:2), etc. Understanding the relationship between flavour compounds and lipids of pork will be helpful to control the quality of pork.

2.
Food Res Int ; 176: 113768, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163699

ABSTRACT

Human milk is the best source of nutrition for infants. Lower freezing temperatures and faster freezing rates allow for better preservation of human milk. However, research on the freezing conditions of human milk is limited. This study investigated the effectiveness of quick freezing and suitable freezing conditions for home preservation. Human milk was stored under different freezing conditions (-18 °C, -18 °C quick freezing, -30 °C, -40 °C, -60 °C, and - 80 °C) for 30, 60, and 90 days and then evaluated for changes in the microbial counts, bioactive protein, and lipid. The results showed that the total aerobic bacterial and Bifidobacteria counts in human milk after storage at freezing temperatures of - 30 °C and lower were closer to those of fresh human milk compared to - 18 °C. Furthermore, the lysozyme loss, lipid hydrolysis degree, and volatile organic compound production were lower. However, -18 °C quick freezing storage was not markedly different from -18 °C in maintaining human milk quality. Based on the results, for household and environmental reasons, the recommended temperature for storing human milk is suggested as -30 °C.


Subject(s)
Cold Temperature , Milk, Human , Humans , Freezing , Milk, Human/microbiology , Refrigeration , Lipids
3.
Molecules ; 28(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36838714

ABSTRACT

As the main consumed meat of Chinese residents, pork has a unique flavor, but the internal volatile organic compounds that cause the flavor differences between pork muscles are not clear at present. In this study, four muscles of Duroc × (Landrace × Yorkshire) pigs (loin, ham, shoulder and belly) were used as experimental subjects. Through the analysis of volatile organic compounds in four muscles of pork, the internal volatile organic compounds of different muscles of pork were discussed. Gas chromatography-ion mobility spectrometry was employed to analyze the four muscles, and volatile organic compounds in these muscles were analyzed and identified. A total of 65 volatile organic compound peaks were obtained by gas chromatography-ion mobility spectrometry. From the qualitative database, a total of 49 volatile organic compounds were identified, including aldehydes, alcohols and ketones. With the variable importance for the projection greater than 1 and significance level less than 0.05 as the criterion, the organic compounds with significant differences were screened by partial least squares-discriminant analysis and significance difference analysis. It was determined that 2-pentylfuran, 2-butanone (M), pentanal (M), butanal (D), (E)-2-hexenal, (E)-2-heptenal (D), 1,2-propanediol and 2-methylpropanal were the differential organic compounds that distinguish the four pork muscles.


Subject(s)
Pork Meat , Red Meat , Volatile Organic Compounds , Animals , Swine , Volatile Organic Compounds/analysis , Pork Meat/analysis , Red Meat/analysis , Gas Chromatography-Mass Spectrometry/methods , Muscles/chemistry
4.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36533432

ABSTRACT

Human milk is universally regarded as the gold standard to fulfill nutrition needs of infants. Lactoferrin (LF) is a major multiple bioactive glycoprotein in human milk but little is presented in infant formula. LF can resist digestion in the infant gastrointestinal tract and is absorbed into the bloodstream in an intact form to perform physiological functions. Evidence suggest that LF prevents pathogen infection, promotes immune system development, intestinal development, brain development and bone health, as well as ameliorates iron deficiency anemia. However, more clinical studies of LF need to be further elucidated to determine an appropriate dosage for application in infant formula. LF is sensitive to denaturation induced by processing of infant formula such as heat treatments and spay drying. Thus, further studies should be focus on maximizing the retention of LF activity in the infant formula process. This review summarizes the structural features of LF. Then the digestion, absorption and metabolism of LF in infants are discussed, followed by the function of LF for infants. Further, we summarize LF in infant formula and effects of processing of infant formula on bioactivities of LF, as well as future perspectives of LF research.

5.
Foods ; 12(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613363

ABSTRACT

In order to improve the efficiency of Soxhlet extraction and oven drying, low-field nuclear magnetic resonance (LF-NMR) technology was used to detect fat and moisture contents in pork. The transverse relaxation time (T2) distribution curves were constructed by Carr−Purcell−Meiboom−Gill (CPMG) experiments. In addition, the optimal conditions of adding MnCl2 aqueous solution was explored to separate water and fat signal peaks. Finally, the reliability of this method for the determination of fat and moisture contents in pork was verified. The present study showed that adding 1.5 mL of 20% MnCl2 aqueous solution solution at 50 °C can isolate and obtain a stable peak of fat. The lard and 0.85% MnCl2 aqueous solution were used as the standards for fat and moisture measurements, respectively, and calibration curves with R2 = 0.9999 were obtained. In addition, the repeatability and reproducibility of this method were 1.71~3.10%. There was a significant correlation (p < 0.05) between the LF-NMR method and the conventional methods (Soxhlet extraction and oven drying), and the R2 was 0.9987 and 0.9207 for fat and moisture, respectively. All the results proved that LF-NMR could determine fat and moisture contents in pork rapidly and simultaneously.

6.
Nutrients ; 13(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34578802

ABSTRACT

It is urgent to seek new potential targets for the prevention or relief of gastrointestinal syndrome in clinical radiation therapy for cancers. Vitamin D, mediated through the vitamin D receptor (VDR), has been identified as a protective nutrient against ionizing radiation (IR)-induced damage. This study investigated whether VDR could inhibit IR-induced intestinal injury and explored underlying mechanism. We first found that vitamin D induced VDR expression and inhibited IR-induced DNA damage and apoptosis in vitro. VDR was highly expressed in intestinal crypts and was critical for crypt stem/progenitor cell proliferation under physiological conditions. Next, VDR-deficient mice exposed to IR significantly increased DNA damage and crypt stem/progenitor cell apoptosis, leading to impaired intestinal regeneration as well as shorter survival time. Furthermore, VDR deficiency activated the Pmaip1-mediated apoptotic pathway of intestinal crypt stem/progenitor cells in IR-treated mice, whereas inhibition of Pmaip1 expression by siRNA transfection protected against IR-induced cell apoptosis. Therefore, VDR protects against IR-induced intestinal injury through inhibition of crypt stem/progenitor cell apoptosis via the Pmaip1-mediated pathway. Our results reveal the importance of VDR level in clinical radiation therapy, and targeting VDR may be a useful strategy for treatment of gastrointestinal syndrome.


Subject(s)
Apoptosis/drug effects , Intestines/radiation effects , Radiation Injuries, Experimental/prevention & control , Receptors, Calcitriol/metabolism , Stem Cells/metabolism , Vitamin D/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , DNA Damage/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-2/metabolism , Radiation Injuries, Experimental/pathology , Radiation-Protective Agents/pharmacology , Rats
7.
J Agric Food Chem ; 67(10): 2801-2810, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30794401

ABSTRACT

The esterified fraction of jujube ( Ziziphus jujuba Mill.) peel extract showed strong antifungal activity on Alternaria alternata. p-Coumaric acid (pCA) was found to be the most predominant individual phenolic acid that was correlated highly with the antifungal activity of the esterified fraction. Thus, effects of postharvest treatments with pCA and its simplest esterified derivative methyl p-coumarate (MeCA) against black spot rot on jujube fruit caused by A. alternata were investigated. pCA and MeCA strongly suppressed in vitro growth of the fungus and significantly reduced postharvest Alternaria rot on fresh jujubes. Biochemical and transcriptional analysis revealed that pCA and MeCA regulated the expression of some genes encoding antioxidant enzymes and their enzymatic activities, enhanced the phenylpropanoid pathway metabolism, and activated the expression of genes encoding pathogenesis-related proteins. These results suggested that, apart from its direct antifungal activity, pCA and MeCA induced defense responses in jujube fruit against postharvest Alternaria rot.


Subject(s)
Alternaria/physiology , Cinnamates/immunology , Coumaric Acids/immunology , Fruit/chemistry , Fruit/immunology , Plant Diseases/microbiology , Ziziphus/microbiology , Alternaria/drug effects , Alternaria/growth & development , Cinnamates/analysis , Coumaric Acids/analysis , Fruit/genetics , Fruit/microbiology , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/immunology , Ziziphus/chemistry , Ziziphus/genetics , Ziziphus/immunology
8.
Plant Cell Physiol ; 60(4): 844-861, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30605542

ABSTRACT

Alternaria alternata is the major threat to postharvest storage of jujube (Ziziphus jujuba Mill.) fruit. We found that natural A. alternata infection can cause very typical phenotype of 'green ring' and 'red ring' surrounding the disease spot on the jujube fruit. The phenotype was successfully modeled and constructed on jujubes by artificial inoculation with the pathogen. Furthermore, the pathogenic infection is evidenced essential to the onset of the phenotype. The 'red ring' circle is proved to be pre-fixed to block the 'green ring' area as a battlefield combating the pathogen's attack. We monitored the global transcriptomic profiling of 'green ring' and 'red ring' tissues from jujubes infected with A. alternata, in comparison with the mock-inoculated fruit and the control intact fruit. Large amount of differentially expressed genes were obtained in 'green ring', followed by 'red ring'. Transcriptional alterations associated with the core and peripheral phenylpropanoid and lignin pathways, plant hormonal metabolisms were greatly influenced in the 'green ring' and 'red ring' by the A. alternata infection. The integrated analysis of transcriptomic profiling and metabolic changes revealed the differentially but delicately coordinated activation of these biological processes in the 'green ring' and 'red ring' on jujubes in defensing the fungal infection.


Subject(s)
Alternaria/pathogenicity , Fruit/metabolism , Metabolomics/methods , Transcriptome/genetics , Alternaria/genetics , Plant Diseases/microbiology , Plant Growth Regulators/metabolism
9.
Int J Food Microbiol ; 278: 26-35, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-29702314

ABSTRACT

The fungus Alternaria alternata can cause food contamination by black spot rot and food safety issues due to the production of mycotoxins. In particular, A. alternata can infect many fresh fruits and vegetables and lead to considerable postharvest decay during storage and processing. The use of plant-derived products in postharvest disease management may be an acceptable alternative to traditional chemical fungicides. The aim of this study was to assess the antifungal activity of ethyl p-coumarate (EpCA) against Alternaria alternata in vitro and in vivo, and to determine the underlying mechanism. Results indicated that EpCA exhibited pronounced antifungal activity against in vitro mycelial growth of A. alternata, with half-inhibition concentration of 176.8 µg/mL. Spore germination of the pathogen was inhibited by EpCA in a dose-dependent manner. Moreover, in vivo test confirmed that both 100 and 800 µg/mL EpCA significantly reduced disease development of black spot rot in jujube fruit caused by A. alternata. The EpCA treatments increased plasma membrane permeability as great leakage of intercellular electrolytes, soluble proteins and sugars of A. alternata occurred during incubation. The EpCA treatments also caused increase of the influx of propidium iodide, a fluorescence dye binding nucleus DNA, into the affected spores, indicating the disrupted plasma membrane integrity. Observations of ultrastructure further evidenced the damage to plasma membrane and morphology of A. alternata caused by EpCA, which resulted in distortion, sunken and shrivelled of spores and mycelia of the pathogen. In addition, fluorometric assay by confocal laser scanning microscopy confirmed that the EpCA treatments induced endogenous reactive oxygen species (ROS) formation in the spores of A. alternata, with stronger and more stable accumulation of ROS at higher concentration of EpCA. Therefore, heavy oxidative damage to cellular membranes and organelles might happen as demonstrated by the severe occurrence of lipid peroxidation of the pathogen treated with EpCA. Taken together, these results indicated that EpCA exerts antifungal activity via membrane-targeted mechanism and it would be a promising candidate to control postharvest diseases of fruits.


Subject(s)
Alternaria/growth & development , Antifungal Agents/pharmacology , Cell Membrane/drug effects , Coumaric Acids/pharmacology , Fruit/microbiology , Fungicides, Industrial/pharmacology , Vegetables/microbiology , Alternaria/isolation & purification , Food Contamination , Food Preservation/methods , Microbial Sensitivity Tests , Mycelium/growth & development , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Spores, Fungal/drug effects , Ziziphus/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...