Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(23): e2314351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38408278

ABSTRACT

Harvesting recyclable ammonia (NH3) from acidic nitrate (NO3 -)-containing wastewater requires the utilization of corrosion-resistant electrocatalytic materials with high activity and selectivity towards acidic electrochemical nitrate reduction (NO3ER). Herein, ultrathin RhNi bimetallenes with Rh-skin-type structure (RhNi@Rh BMLs) are fabricated towards acidic NO3ER. The Rh-skin atoms on the surface of RhNi@Rh BMLs experience the lattice compression-induced strain effect, resulting in shortened Rh-Rh bond and downshifted d-band center. Experimental and theoretical calculation results corroborate that Rh-skin atoms can inhibit NO2*/NH2* adsorption-induced Rh dissolution, contributing to the exceptional electrocatalytic durability of RhNi@Rh BMLs (over 400 h) towards acidic NO3ER. RhNi@Rh BMLs also reveal an excellent catalytic performance, boasting a 98.4% NH3 Faradaic efficiency and a 13.4 mg h-1 mgcat -1 NH3 yield. Theoretical calculations reveal that compressive stress tunes the electronic structure of Rh skin atoms, which facilitates the reduction of NO* to NOH* in NO3ER. The practicality of RhNi@Rh BMLs has also been confirmed in an alkaline-acidic hybrid zinc-nitrate battery with a 1.39 V open circuit voltage and a 10.5 mW cm-2 power density. This work offers valuable insights into the nature of electrocatalyst deactivation behavior and guides the development of high-efficiency corrosion-resistant electrocatalysts for applications in energy and environment.

2.
Chem Commun (Camb) ; 58(79): 11139-11142, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36106578

ABSTRACT

Electrostatically assembled ultrathin rhodium nanosheet-gold nanowire nanocomposites (Rh-Au CNSs) were used as an advanced electrocatalyst for the methanol oxidation reaction, which revealed a mass activity of 355 mA mgRh-1 at 0.607 V potential, much higher than single metal Rh nanosheets (273 mA mgRh-1) and commercial Rh nanoparticles (165 mA mgRh-1).

3.
ChemSusChem ; 12(17): 3988-3995, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31270948

ABSTRACT

The electrochemical CO2 reduction reaction (CO2 RR) in aqueous solution inevitably competes with the hydrogen evolution reaction (HER), which results in a difficult separation of the complex products. In this study, a Fe/N/C catalyst derived from Fe(SCN)3 (labelled SMFeSCN) revealed a high CO Faradaic efficiency (FE) of 99 % at a moderate overpotential of 0.44 V. CO2 RR and HER competed with each other for active sites on Fe/N/C. The high FE for CO production originated from the high content of micropores on the catalyst, which could suppress the side reactions by increasing CO2 uptake. More importantly, excellent tolerance towards metal-ion impurities was demonstrated in Fe/N/C, which was primarily owing to the high specific surface area with scattered active sites. Thus, the Fe/N/C catalyst showed good activity for CO2 RR without influencing the electrolyte purity, thus raising the possibility of its practical application.

4.
Chem Asian J ; 14(9): 1549-1556, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30924601

ABSTRACT

A synchronous carbon-coating and interfacial-functionalizing approach is proposed for the fabrication of Mo-doped Mox Ti1-x O2-δ nanotubes (C@IF-MTNTs) under mild hydrothermal reaction with subsequent annealing as advanced catalyst supports for PtRu nanoparticles (NPs) towards methanol electrooxidation. The carbonation of glucose and Mo-doping takes place simultaneously at the interface of pristine anatase TiO2 nanotubes (TNTs), generating a unique concentric multilayered one-dimensional (1D) structure with crystalline an anatase/rutile mixed-phase TiO2 core and Mo-functionalized interface and subsequently a carbon shell. The obtained PtRu/C@IF-MTNTs catalyst exhibits an over 2 times higher mass activity with comparable durability than that of the unmodified PtRu/C@TNTs catalyst and over 1.7 times higher mass activity with over 20 % higher stability than that of PtRu/C catalyst. Such superior catalytic performance towards methanol electrooxidation is ascribed to the Mo-functionalized interface, concentric multilayered 1D architecture, and anatase/rutile mixed-phase core, which facilitates the charge transport through 1D structural support and electronic interaction between C@IF-MTNTs and ultrafine PtRu NPs. This work reveals the critical application of a 1D interfacial functionalized architecture for advanced energy storage and conversion.

5.
Chem Asian J ; 13(20): 3057-3062, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30133158

ABSTRACT

The oxygen reduction reaction (ORR) in a cathode is an essential component of many electrochemical energy storage and conversion systems. Two-dimensional materials are beneficial for electron conduction and mass transport with high density, showing prominent electrochemical catalytic performance towards the ORR. Herein, a simple NaCl-assisted method to synthesize cobalt-nitrogen-doped carbon materials (CoNC), which present prominent performance towards the ORR in alkaline media, is described. The utilization of the NaCl template endows the product with a large specific surface area of 556.4 m2 g-1 , as well as good dispersion of cobalt nanoparticles. CoNC-800@NaCl (800 indicates the calcination temperature in °C) displays an excellent onset potential of 0.94 V (vs. a reversible hydrogen electrode), which is close to that of commercial Pt/C. Additionally, CoNC-800@NaCl also exhibits better long-term durability and methanol tolerance than that of Pt/C. The high-performance CoNC-800@NaCl catalyst provides a hopeful alternative to noble-metal catalysts for the ORR in practical applications.

6.
Small ; : e1801239, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29882268

ABSTRACT

The hollow noble metal nanostructures have attracted wide attention in catalysis/electrocatalysis. Here a two-step procedure for constructing hollow Rh nanospheres (Rh H-NSs) with clean surface is described. By selectively removing the surfactant and Au core of Au-core@Rh-shell nanostructures (Au@Rh NSs), the surface-cleaned Rh H-NSs are obtained, which contain abundant porous channels and large specific surface area. The as-prepared Rh H-NSs exhibit enhanced inherent activity for the methanol oxidation reaction (MOR) compared to state-of-the-art Pt nanoparticles in alkaline media. Further electrochemical experiments show that Rh H-NSs also have high activity for the electrooxidation of formaldehyde and formate (intermediate species in the course of the MOR) in alkaline media. Unfortunately, Rh H-NSs have low electrocatalytic activity for the ethanol and 1-propanol oxidation reactions in alkaline media. All electrochemical results indicate that the order of electrocatalytic activity of Rh H-NSs for alcohol oxidation reaction is methanol (C1 ) > ethanol (C2 ) > 1-propanol (C3 ). This work highlights the synthesis route of Rh hollow nanostructures, and indicates the promising application of Rh nanostructures in alkaline direct methanol fuel cells.

7.
ACS Appl Mater Interfaces ; 10(23): 19755-19763, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29799726

ABSTRACT

Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt1Rh1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.

8.
Sci Rep ; 6: 37112, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27845420

ABSTRACT

Low hydrophilicity of graphene is one of the major obstacles for biomaterials application. To create some hydrophilic groups on graphene is addressed this issue. Herein, COOH+ ion implantation modified graphene (COOH+/graphene) and COOH functionalized graphene were designed by physical ion implantation and chemical methods, respectively. The structure and surface properties of COOH+/graphene and COOH functionalized graphene were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle measurement. Compared with graphene, COOH+/graphene and COOH functionalized graphene revealed improvement of cytocompatibility, including in vitro cell viability and morphology. More importantly, COOH+/graphene exhibited better improvement effects than functionalized graphene. For instance, COOH+/graphene with 1 × 1018 ions/cm2 showed the best cell-viability, proliferation and stretching. This study demonstrated that ion implantation can better improve the cytocompatibility of the graphene.


Subject(s)
Biocompatible Materials/chemistry , Cell Adhesion , Cell Proliferation , Graphite/chemistry , Animals , Cell Line , Cell Survival , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...