Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2400697, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824667

ABSTRACT

Small molecule-based photothermal agents (PTAs) hold promising future for photothermal therapy; however, unexpected inactivation exerts negative impacts on their application clinically. Herein, a self-regenerating PTA strategy is proposed by integrating 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) with a thermodynamic agent (TDA) 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Under NIR laser, the photothermal effect of ABTS•+ accelerates the production of alkyl radicals by AIPH, which activates the regeneration of ABTS•+, thus creating a continuous positive feedback loop between photothermal and thermodynamic effects. The combination of ABTS•+ regeneration and alkyl radical production leads to the tandem photothermal and thermodynamic tumor therapy. In vitro and in vivo experiments confirm that the synergistic action of thermal ablation, radical damage, and oxidative stress effectively realizes tumor suppression. This work offers a promising approach to address the unwanted inactivation of PTAs and provides valuable insights for optimizing combination therapy.

2.
ACS Appl Mater Interfaces ; 16(22): 28991-29002, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38769310

ABSTRACT

Triphenylphosphine functionalized carbon dots (TPP-CDs) showcase robust mitochondria targeting capacity owing to their positive electrical properties. However, TPP-CDs typically involve complicated synthesis steps and time-consuming postmodification procedures. Especially, the one-step target-oriented synthesis of TPP-CDs and the regulation of TPP linkage modes remain challenges. Herein, we propose a free-radical-initiated random copolymerization in combination with hydrothermal carbonation to regulate the TPP backbone linkage for target-oriented synthesis of triphenylphosphine copolymerization carbon dots (TPPcopoly-CDs). The linkage mechanism of random copolymerization reactions is directional, straightforward, and controllable. The TPP content and IC50 of hydroxyl radicals scavenging ability of TPPcopoly-CDs are 53 wt % and 0.52 mg/mL, respectively. TPP serves as a charge control agent to elevate the negatively charged CDs by 20 mV. TPPcopoly-CDs with negative charge can target mitochondria, and in the corresponding mechanism the TPP moiety plays a crucial role in targeting mitochondria. This discovery provides a new perspective on the controlled synthesis, TPP linkage modes, and mitochondrial targeting design of TPP-CDs.


Subject(s)
Carbon , Mitochondria , Organophosphorus Compounds , Quantum Dots , Organophosphorus Compounds/chemistry , Carbon/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Quantum Dots/chemistry , Humans , Reactive Oxygen Species/metabolism , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , HeLa Cells
3.
Environ Toxicol ; 39(9): 4385-4396, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38798119

ABSTRACT

Zinc finger MYND-type containing 15 (ZMYND15) has been documented to play important roles in spermatogenesis, and mutants contribute to recessive azoospermia, severe oligozoospermia, non-obstructive azoospermia, teratozoospermia, even male infertility. ZMYND10 is involved in sperm motility. Whether environmental pollutants impair male fertility via regulating the expression of ZMYND15 and ZMYND10 has not been studied. Arsenic exposure results in poor sperm quality and male infertility. In order to investigate whether arsenic-induced male reproductive toxicity is related to the expression of ZMYND15, ZMYND10 and their target genes, we established a male rat model of sodium arsenite exposure-induced reproductive injury, measured sperm quality, serum hormone levels, mRNA and protein expressions of intratesticular ZMYND15 and ZMYND10 as well as their target genes. The results showed that, in addition to the increased mRNA expression of Tnp1, sodium arsenite exposure reduced sperm quality, serum hormone levels, and mRNA and protein expression of intratesticular ZMYND15 and ZMYND10 and their target genes in male rats compared with the control group (p < .05). Therefore, our study first showed that the environmental pollutant arsenic impairs sperm quality in male rats by reducing the expression of ZMYND10 and ZMYND15 and their regulatory genes, which provides a possible diagnostic marker for environmental pollutants-induced male infertility.


Subject(s)
Arsenites , Down-Regulation , Sodium Compounds , Spermatozoa , Male , Animals , Sodium Compounds/toxicity , Arsenites/toxicity , Spermatozoa/drug effects , Down-Regulation/drug effects , Rats , Rats, Sprague-Dawley , Environmental Pollutants/toxicity , Testis/drug effects , Testis/metabolism , Infertility, Male/chemically induced , Infertility, Male/genetics
4.
Anal Chem ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38343063

ABSTRACT

Although super-resolution imaging provides a great opportunity to disclose the structures of living cells at the nanoscale level, resolving the structural details of organelles is highly dependent on the targeting accuracy and photophysical properties of fluorescence trackers. Herein, we report a series of ultrabright and photostable trackers of lysosomal membranes for super-resolution imaging using stimulated emission depletion microscopy (STED). These trackers are composed of lipophilic NIR BODIPY derivatives and ionizable tertiary amines. This structural feature enables accurate targeting of the lysosomal membrane through the formation of transient amphiphilicity driven by the acidity in the lysosome. As a representative, Lyso-700 is applied for STED-based super-resolution imaging of the lysosomal membrane of living macrophages. By use of Lyso-700, the interaction details between lysosomes of macrophages and fungi are visualized. Overall, these trackers display great potential as advanced lysosome trackers and merit further evaluation for lysosome-related studies.

5.
Front Microbiol ; 14: 1328158, 2023.
Article in English | MEDLINE | ID: mdl-38188564

ABSTRACT

Introduction: Although the composition and succession of microbial communities in soy sauce fermentation have been well-characterized, the understanding of phage communities in soy sauce remains limited. Methods: This study determined the diversity, taxonomic composition, and predicted function of phage communities and the phage-host interactions in two types of raw soy sauce (Cantonese-type fermentation, NJ; Japanese-type fermentation, PJ) using shotgun metagenomics. Results and discussion: These two raw soy sauces showed differences in phage composition (121 viral operational taxonomic units (vOTUs) in NJ and 387 vOTUs in PJ), with a higher abundance of the family Siphoviridae (58.50%) in the NJ phage community and a higher abundance of Myoviridae (33.01%) in PJ. Auxiliary metabolic functional annotation analyses showed that phages in the raw soy sauces mostly encoded genes with unknown functions (accounting for 66.33% of COG profiles), but the NJ sample contained genes mostly annotated to conventional functions related to carbohydrate metabolism (0.74%) and lipid metabolism (0.84%), while the PJ sample presented a higher level of amino acid metabolism functions (0.12%). Thirty auxiliary metabolism genes (AMGs) were identified in phage genomes, which were associated with carbohydrate utilization, cysteine and methionine metabolism, and aspartic acid biosynthesis for the host. To identify phage-host interactions, 30 host genomes (affiliated with 22 genera) were also recruited from the metagenomic dataset. The phage-host interaction analysis revealed a wide range of phage hosts, for which a total of 57 phage contigs were associated with 17 host genomes, with Shewanella fodinae and Weissella cibaria infected by the most phages. This study provides a comprehensive understanding of the phage community composition, auxiliary metabolic functions, and interactions with hosts in two different types of raw soy sauce.

SELECTION OF CITATIONS
SEARCH DETAIL