Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Pharmacol Rev ; 74(3): 462-505, 2022 07.
Article in English | MEDLINE | ID: mdl-35710133

ABSTRACT

The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.


Subject(s)
Angiotensinogen , Cardiovascular Diseases , Female , Humans , Male , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Angiotensinogen/metabolism , Cardiovascular Diseases/metabolism , Drug Delivery Systems , Kidney/blood supply , Kidney/metabolism , Renin/metabolism , Renin-Angiotensin System , Sodium-Glucose Transporter 2 Inhibitors/metabolism
2.
Int J Mol Sci ; 23(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35269547

ABSTRACT

Contrary to public perception, hypertension remains one of the most important public health problems in the United States, affecting 46% of adults with increased risk for heart attack, stroke, and kidney diseases. The mechanisms underlying poorly controlled hypertension remain incompletely understood. Recent development in the Cre/LoxP approach to study gain or loss of function of a particular gene has significantly helped advance our new insights into the role of proximal tubule angiotensin II (Ang II) and its AT1 (AT1a) receptors in basal blood pressure control and the development of Ang II-induced hypertension. This novel approach has provided us and others with an important tool to generate novel mouse models with proximal tubule-specific loss (deletion) or gain of the function (overexpression). The objective of this invited review article is to review and discuss recent findings using novel genetically modifying proximal tubule-specific mouse models. These new studies have consistently demonstrated that deletion of AT1 (AT1a) receptors or its direct downstream target Na+/H+ exchanger 3 (NHE3) selectively in the proximal tubules of the kidney lowers basal blood pressure, increases the pressure-natriuresis response, and induces natriuretic responses, whereas overexpression of an intracellular Ang II fusion protein or AT1 (AT1a) receptors selectively in the proximal tubules increases proximal tubule Na+ reabsorption, impairs the pressure-natriuresis response, and elevates blood pressure. Furthermore, the development of Ang II-induced hypertension by systemic Ang II infusion or by proximal tubule-specific overexpression of an intracellular Ang II fusion protein was attenuated in mutant mice with proximal tubule-specific deletion of AT1 (AT1a) receptors or NHE3. Thus, these recent studies provide evidence for and new insights into the important roles of intratubular Ang II via AT1 (AT1a) receptors and NHE3 in the proximal tubules in maintaining basal blood pressure homeostasis and the development of Ang II-induced hypertension.


Subject(s)
Angiotensin II/metabolism , Hypertension/metabolism , Receptor, Angiotensin, Type 1/metabolism , Angiotensin II/genetics , Animals , Blood Pressure , Disease Models, Animal , Gain of Function Mutation , Humans , Hypertension/genetics , Loss of Function Mutation , Mice , Receptor, Angiotensin, Type 1/genetics , Sodium-Hydrogen Exchanger 3/metabolism
3.
Clin Sci (Lond) ; 135(15): 1825-1843, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34282828

ABSTRACT

In the present study, we tested the hypothesis that there are significant sex differences in angiotensin II (Ang II)-induced hypertension and kidney injury using male and female wildtype (WT) and proximal tubule-specific AT1a receptor knockout mice (PT-Agtr1a-/-). Twelve groups (n=8-12 per group) of adult male and female WT and PT-Agtr1a-/- mice were infused with a pressor dose of Ang II via osmotic minipump for 2 weeks (1.5 mg/kg/day, i.p.) and simultaneously treated with or without losartan (20 mg/kg/day, p.o.) to determine the respective roles of AT1a receptors in the proximal tubules versus systemic tissues. Basal systolic, diastolic, and mean arterial pressure were approximately 13 ± 3 mmHg lower (P<0.01), while basal 24-h urinary Na+, K+, and Cl- excretion were significantly higher in both male and female PT-Agtr1a-/- mice than WT controls (P<0.01) without significant sex differences between different strains. Both male and female WT and PT-Agtr1a-/- mice developed hypertension (P<0.01), and the magnitudes of the pressor responses to Ang II were similar between male and female WT and PT-Agtr1a-/- mice (n.s.). Likewise, Ang II-induced hypertension was significantly attenuated in both male and female PT-Agtr1a-/- mice (P<0.01). Furthermore, losartan attenuated the hypertensive responses to Ang II to similar extents in both male and female WT and PT-Agtr1a-/- mice. Finally, Ang II-induced kidney injury was attenuated in PT-Agtr1a-/- mice (P<0.01). In conclusion, the present study demonstrates that deletion of AT1a receptors in the proximal tubules of the kidney attenuates Ang II-induced hypertension and kidney injury without revealing significant sex differences.


Subject(s)
Arterial Pressure , Hypertension/metabolism , Kidney Diseases/metabolism , Kidney Tubules, Proximal/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System , Angiotensin II , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Antihypertensive Agents/pharmacology , Arterial Pressure/drug effects , Disease Models, Animal , Female , Fibrosis , Hypertension/chemically induced , Hypertension/physiopathology , Hypertension/prevention & control , Kidney Diseases/chemically induced , Kidney Diseases/physiopathology , Kidney Diseases/prevention & control , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/physiopathology , Kidney Tubules, Proximal/ultrastructure , Losartan/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Receptor, Angiotensin, Type 1/genetics , Renin-Angiotensin System/drug effects , Sex Characteristics , Sex Factors , Signal Transduction
4.
Hypertension ; 74(3): 526-535, 2019 09.
Article in English | MEDLINE | ID: mdl-31352824

ABSTRACT

The present study directly tested the hypothesis that the NHE3 (Na+/H+ exchanger 3) in the proximal tubules of the kidney is required for the development of Ang II (angiotensin II)-induced hypertension using PT-Nhe3-/- (proximal tubule-specific NHE3 knockout) mice. Specifically, PT-Nhe3-/- mice were generated using the SGLT2-Cre/Nhe3loxlox approach, whereas Ang II-induced hypertension was studied in 12 groups (n=5-12 per group) of adult male and female wild-type (WT) and PT-Nhe3-/- mice. Under basal conditions, systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure were significantly lower in male and female PT-Nhe3-/- than WT mice (P<0.01). A high pressor, 1.5 mg/kg per day, intraperitoneal or a slow pressor dose of Ang II, 0.5 mg/kg per day, intraperitoneal for 2 weeks significantly increased systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure in male and female WT mice (P<0.01), but the hypertensive response to Ang II was markedly attenuated in male and female PT-Nhe3-/- mice (P<0.01). Ang II impaired the pressure-natriuresis response in WT mice, whereas proximal tubule-specific deletion of NHE3 improved the pressure-natriuresis response in Ang II-infused PT-Nhe3-/- mice (P<0.01). AT1 receptor blocker losartan completely blocked Ang II-induced hypertension in both WT and PT-Nhe3-/- mice (P<0.01). However, inhibition of nitric oxide synthase with L-NG-Nitroarginine methyl ester had no effect on Ang II-induced hypertension in WT or PT-Nhe3-/- mice (not significant). Furthermore, Ang II-induced hypertension was significantly attenuated by an orally absorbable NHE3 inhibitor AVE0657. In conclusion, NHE3 in the proximal tubules of the kidney may be a therapeutical target in hypertension induced by Ang II or with increased NHE3 expression in the proximal tubules.


Subject(s)
Angiotensin II/pharmacology , Kidney Tubules, Proximal/metabolism , Losartan/administration & dosage , Receptor, Angiotensin, Type 1/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Animals , Disease Models, Animal , Female , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/physiopathology , Injections, Intraperitoneal , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Knockout , Random Allocation , Reference Values , Sodium-Hydrogen Exchangers/metabolism , Treatment Outcome
6.
Physiol Genomics ; 51(4): 97-108, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30849009

ABSTRACT

The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.


Subject(s)
Angiotensin II/pharmacology , Blood Pressure/drug effects , Blood Pressure/genetics , Hypertension/chemically induced , Hypertension/genetics , Sodium-Hydrogen Exchanger 3/genetics , Animals , Humans , Kidney Tubules, Proximal/drug effects
7.
Hypertension ; 72(6): 1328-1336, 2018 12.
Article in English | MEDLINE | ID: mdl-30571224

ABSTRACT

The present study directly tested the hypothesis that deletion of the NHE3 (Na+/H+ exchanger 3) selectively in the proximal tubules of the kidney lowers basal blood pressure by increasing the pressure-natriuresis response in mice. Adult male and female, age-matched wild-type (WT) littermates and proximal tubule-specific NHE3 knockout mice (PT- Nhe3-/-; n=6-16 per group) were studied for (1) basal phenotypes of electrolytes and pH, blood pressure, and kidney function; (2) the pressure-natriuresis response using the mesenteric, celiac, and abdominal arterial occlusion technique; and (3) the natriuretic responses to acute saline expansion (0.9% NaCl, 10% body weight, intraperitoneal) or 2-week of 2% NaCl diet. Under basal conditions, PT- Nhe3-/- mice showed significantly lower systolic, diastolic, and mean arterial blood pressure ( P<0.01) than WT mice ( P<0.01). PT- Nhe3-/- mice also exhibited significantly greater diuretic ( P<0.01) and natriuretic responses than WT mice ( P<0.01), without altering 24-hour fecal Na+ excretion, plasma pH, Na+, and bicarbonate levels. In response to increased renal perfusion pressure by 30 mm Hg, the pressure-natriuresis response increased 5-fold in WT mice ( P<0.01), but it increased 8-fold in PT- Nhe3-/- mice ( P<0.01). In response to 10% acute saline expansion or 2-week 2% NaCl diet, more pronounced natriuretic responses were demonstrated in PT- Nhe3-/- than WT mice ( P<0.01). Our results support the scientific premise and physiological relevance that NHE3 in the proximal tubules plays an essential role in maintaining basal blood pressure homeostasis, and genetic deletion of NHE3 selectively in the proximal tubules of the kidney lowers blood pressure by increasing the pressure natriuretic response.


Subject(s)
Blood Pressure/physiology , Kidney Tubules, Proximal/metabolism , Natriuresis/physiology , Sodium-Hydrogen Exchanger 3/metabolism , Animals , Kidney/metabolism , Mice , Mice, Knockout , Sodium Chloride, Dietary , Sodium-Hydrogen Exchanger 3/genetics
8.
Hypertension ; 72(5): 1084-1086, 2018 11.
Article in English | MEDLINE | ID: mdl-30354833
9.
Clin Sci (Lond) ; 132(13): 1383-1401, 2018 07 16.
Article in English | MEDLINE | ID: mdl-29986878

ABSTRACT

The renin-angiotensin system (RAS) is widely recognized as one of the most important vasoactive hormonal systems in the physiological regulation of blood pressure and the development of hypertension. This recognition is derived from, and supported by, extensive molecular, cellular, genetic, and pharmacological studies on the circulating (tissue-to-tissue), paracrine (cell-to-cell), and intracrine (intracellular, mitochondrial, nuclear) RAS during last several decades. Now, it is widely accepted that circulating and local RAS may act independently or interactively, to regulate sympathetic activity, systemic and renal hemodynamics, body salt and fluid balance, and blood pressure homeostasis. However, there remains continuous debate with respect to the specific sources of intratubular and intracellular RAS in the kidney and other tissues, the relative contributions of the circulating RAS to intratubular and intracellular RAS, and the roles of intratubular compared with intracellular RAS to the normal control of blood pressure or the development of angiotensin II (ANG II)-dependent hypertension. Based on a lecture given at the recent XI International Symposium on Vasoactive Peptides held in Horizonte, Brazil, this article reviews recent studies using mouse models with global, kidney- or proximal tubule-specific overexpression (knockin) or deletion (knockout) of components of the RAS or its receptors. Although much knowledge has been gained from cell- and tissue-specific transgenic or knockout models, a unifying and integrative approach is now required to better understand how the circulating and local intratubular/intracellular RAS act independently, or with other vasoactive systems, to regulate blood pressure, cardiovascular and kidney function.


Subject(s)
Blood Pressure/physiology , Kidney/metabolism , Renin-Angiotensin System/physiology , Angiotensin II/physiology , Angiotensinogen/metabolism , Animals , Disease Models, Animal , Humans , Kidney/physiology , Kidney Tubules, Proximal/metabolism , Liver/metabolism , Mice , Renin/physiology
10.
Pharmacol Res ; 125(Pt A): 21-38, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28619367

ABSTRACT

The renin-angiotensin system (RAS) is undisputedly one of the most prominent endocrine (tissue-to-tissue), paracrine (cell-to-cell) and intracrine (intracellular/nuclear) vasoactive systems in the physiological regulation of neural, cardiovascular, blood pressure, and kidney function. The importance of the RAS in the development and pathogenesis of cardiovascular, hypertensive and kidney diseases has now been firmly established in clinical trials and practice using renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, type 1 (AT1) angiotensin II (ANG II) receptor blockers (ARBs), or aldosterone receptor antagonists as major therapeutic drugs. The major mechanisms of actions for these RAS inhibitors or receptor blockers are mediated primarily by blocking the detrimental effects of the classic angiotensinogen/renin/ACE/ANG II/AT1/aldosterone axis. However, the RAS has expanded from this classic axis to include several other complex biochemical and physiological axes, which are derived from the metabolism of this classic axis. Currently, at least five axes of the RAS have been described, with each having its key substrate, enzyme, effector peptide, receptor, and/or downstream signaling pathways. These include the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor, the ANG II/APA/ANG III/AT2/NO/cGMP, the ANG I/ANG II/ACE2/ANG (1-7)/Mas receptor, the prorenin/renin/prorenin receptor (PRR or Atp6ap2)/MAP kinases ERK1/2/V-ATPase, and the ANG III/APN/ANG IV/IRAP/AT4 receptor axes. Since the roles and therapeutic implications of the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor axis have been extensively reviewed, this article will focus primarily on reviewing the roles and therapeutic implications of the vasoprotective axes of the RAS in cardiovascular, hypertensive and kidney diseases.


Subject(s)
Cardiovascular Diseases/physiopathology , Hypertension/physiopathology , Kidney Diseases/physiopathology , Renin-Angiotensin System/physiology , Animals , Humans , Signal Transduction/physiology
11.
Am J Physiol Renal Physiol ; 313(2): F440-F449, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28468964

ABSTRACT

ANG II has many biological effects in renal physiology, particularly in Ca2+ handling in the regulation of fluid and solute reabsorption. It involves the systemic endocrine renin-angiotensin system (RAS), but tissue and intracrine ANG II are also known. We have shown that ANG II induces heterodimerization of its AT1 and AT2 receptors (AT1R and AT2R) to stimulate sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity. Thus, we investigated whether ANG II-AT1R/AT2R complex is formed and internalized, and also examined the intracellular localization of this complex to determine how its effect might be exerted on renal intracrine RAS. Living cell imaging of LLC-PK1 cells, quantification of extracellular ANG II, and use of the receptor antagonists, losartan and PD123319, showed that ANG II is internalized with AT1R/AT2R heterodimers as a complex in a microtubule-dependent and clathrin-independent manner, since colchicine-but not Pitstop2-blocked this process. This result was confirmed by an increase of ß-arrestin phosphorylation after ANG II treatment, clathrin-mediated endocytosis being dependent on dephosphorylation of ß-arrestin. Internalized ANG II colocalized with an endoplasmic reticulum (ER) marker and increased levels of AT1R, AT2R, and PKCα in ER-enriched membrane fractions. This novel evidence suggests the internalization of an ANG II-AT1/AT2 complex to target ER, where it might trigger intracellular Ca2+ responses.


Subject(s)
Angiotensin II/metabolism , Cell Membrane/metabolism , Endocytosis , Endoplasmic Reticulum/metabolism , Kidney/metabolism , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 2 Receptor Blockers/pharmacology , Animals , Calcium/metabolism , Cell Membrane/drug effects , Endocytosis/drug effects , Endoplasmic Reticulum/drug effects , Kidney/drug effects , LLC-PK1 Cells , Microtubules/metabolism , Multiprotein Complexes , Phosphorylation , Protein Kinase C-alpha/metabolism , Protein Transport , Receptor, Angiotensin, Type 1/drug effects , Receptor, Angiotensin, Type 2/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Swine , beta-Arrestins/metabolism
12.
Curr Hypertens Rep ; 18(8): 63, 2016 08.
Article in English | MEDLINE | ID: mdl-27372447

ABSTRACT

It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension.


Subject(s)
Angiotensin II/physiology , Hypertension/physiopathology , Kidney Tubules, Proximal/physiopathology , Renin-Angiotensin System/physiology , Angiotensinogen/physiology , Animals , Female , Humans , Low Density Lipoprotein Receptor-Related Protein-2/physiology , Male , Receptor, Angiotensin, Type 1/metabolism , Receptors, Cell Surface/physiology , Sodium/blood , Sodium/metabolism , Sodium-Hydrogen Exchangers/physiology , Up-Regulation/physiology , Vacuolar Proton-Translocating ATPases/physiology , Prorenin Receptor
13.
Am J Physiol Renal Physiol ; 310(10): F1103-12, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26864937

ABSTRACT

Long-term angiotensin II (ANG II) infusion significantly increases ANG II levels in the kidney through two major mechanisms: AT1 receptor-mediated augmentation of angiotensinogen (AGT) expression and uptake of circulating ANG II by the proximal tubules. However, it is not known whether intracellular ANG II stimulates AGT expression in the proximal tubule. In the present study, we overexpressed an intracellular cyan fluorescent ANG II fusion protein (Ad-sglt2-ECFP/ANG II) selectively in the proximal tubule of rats and mice using the sodium and glucose cotransporter 2 (sglt2) promoter. AGT mRNA and protein expression in the renal cortex and 24-h urinary AGT excretion were determined 4 wk following overexpression of ECFP/ANG II in the proximal tubule. Systolic blood pressure was significantly increased with a small antinatriuretic effect in rats and mice with proximal tubule-selective expression of ECFP/ANG II (P < 0.01). AGT mRNA and protein expression in the cortex were increased by >1.5-fold and 61 ± 16% (P < 0.05), whereas urinary AGT excretion was increased from 48.7 ± 5.7 (n = 13) to 102 ± 13.5 (n = 13) ng/24 h (P < 0.05). However, plasma AGT, renin activity, and ANG II levels remained unaltered by ECFP/ANG II. The increased AGT mRNA and protein expressions in the cortex by ECFP/ANG II were blocked in AT1a-knockout (KO) mice. Studies in cultured mouse proximal tubule cells demonstrated involvement of AT1a receptor/MAP kinases/NF-кB signaling pathways. These results indicate that intracellular ANG II stimulates AGT expression in the proximal tubules, leading to increased AGT formation and secretion into the tubular fluid, which contributes to ANG II-dependent hypertension.


Subject(s)
Angiotensin II/metabolism , Angiotensinogen/metabolism , Kidney Tubules, Proximal/metabolism , MAP Kinase Signaling System , Receptor, Angiotensin, Type 1/metabolism , Animals , Blood Pressure , Hypertension/metabolism , Male , NF-kappa B/metabolism , Rats, Sprague-Dawley , Renin/blood , Renin-Angiotensin System , Sodium/urine
14.
Physiol Rep ; 3(11)2015 Nov.
Article in English | MEDLINE | ID: mdl-26564064

ABSTRACT

The role of Na(+/)H(+) exchanger 3 (NHE3) in the kidney in angiotensin II (ANG II)-induced hypertension remains unknown. The present study used global NHE3-deficient mice with transgenic rescue of the Nhe3 gene in small intestines (tgNhe3(-/-)) to test the hypothesis that genetic deletion of NHE3 selectively in the kidney attenuates ANG II-induced hypertension. Six groups of wild-type (tgNhe3(+/+)) and tgNhe3(-/-) mice were infused with either vehicle or ANG II (1.5 mg/kg/day, i.p., 2 weeks, or 10 nmol/min, i.v., 30 min), treated with or without losartan (20 mg/kg/day, p.o.) for 2 weeks. Basal systolic blood pressure (SBP) and mean intra-arterial blood pressure (MAP) were significantly lower in tgNhe3(-/-) mice (P < 0.01). Basal glomerular filtration rate, 24 h urine excretion, urinary Na(+) excretion, urinary K(+) excretion, and urinary Cl(-) excretion were significantly lower in tgNhe3(-/-) mice (P < 0.01). These responses were associated with significantly elevated plasma ANG II and aldosterone levels, and marked upregulation in aquaporin 1, the Na(+)/HCO3 cotransporter, the α1 subunit isoform of Na(+)/K(+)-ATPase, protein kinase Cα, MAP kinases ERK1/2, and glycogen synthase kinase 3 α/ß in the renal cortex of tgNhe3(-/-) mice (P < 0.01). ANG II infusion markedly increased SBP and MAP and renal cortical transporter and signaling proteins in tgNhe3(+/+), as expected, but all of these responses to ANG II were attenuated in tgNhe3(-/-) mice (P < 0.01). These results suggest that NHE3 in the kidney is necessary for maintaining normal blood pressure and fully developing ANG II-dependent hypertension.

15.
Physiol Genomics ; 47(10): 479-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26242933

ABSTRACT

The renal mechanisms responsible for angiotensin II (ANG II)-induced hypertension remain incompletely understood. The present study tested the hypothesis that the Na(+)/H(+) exchanger 3 (NHE3) is required for ANG II-induced hypertension in mice. Five groups of wild-type (Nhe3(+/+)) and Nhe3(-/-) mice were treated with vehicle or high pressor doses of ANG II (1.5 mg/kg/day ip, via minipump for 2 wk, or 10 pmol/min iv for 30 min). Under basal conditions, Nhe3(-/-) mice had significantly lower systolic blood pressure (SBP) and mean intra-arterial pressure (MAP) (P < 0.01), 24 h urine (P < 0.05), urinary Na(+) (P < 0.01) and urinary K(+) excretion (P < 0.01). In response to ANG II, SBP and MAP markedly increased in Nhe3(+/+) mice in a time-dependent manner, as expected (P < 0.01). However, these acute and chronic pressor responses to ANG II were significantly attenuated in Nhe3(-/-) mice (P < 0.01). Losartan blocked ANG II-induced hypertension in Nhe3(+/+) mice but induced marked mortality in Nhe3(-/-) mice. The attenuated pressor responses to ANG II in Nhe3(-/-) mice were associated with marked compensatory humoral and renal responses to genetic loss of intestinal and renal NHE3. These include elevated basal plasma ANG II and aldosterone and kidney ANG II levels, salt wasting from the intestines, increased renal AQP1, Na(+)/HCO3 (-), and Na(+)/K(+)-ATPase expression, and increased PKCα, mitogen-activated protein kinases ERK1/2, and glycogen synthase kinase 3αß signaling proteins in the proximal tubules (P < 0.01). We concluded that NHE3 in proximal tubules of the kidney, along with NHE3 in intestines, is required for maintaining basal blood pressure as well as the full development of ANG II-induced hypertension.


Subject(s)
Hypertension/chemically induced , Hypertension/metabolism , Sodium-Hydrogen Exchangers/metabolism , Aldosterone/blood , Anesthesia , Angiotensin II/blood , Animals , Blood Pressure , Electrolytes/urine , Hypertension/blood , Hypertension/physiopathology , Intestines/pathology , Kidney/pathology , Kidney Tubules/metabolism , Kidney Tubules/physiopathology , Male , Mice , Phenotype , Phosphorylation , Potassium/urine , Signal Transduction , Sodium/urine , Systole
16.
Am J Physiol Renal Physiol ; 307(8): F949-61, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25164083

ABSTRACT

Caveolin 1 (CAV-1) functions not only as a constitutive scaffolding protein of caveolae but also as a vesicular transporter and signaling regulator. In the present study, we tested the hypothesis that CAV-1 knockout (CAV-1 KO) inhibits ANG II type 1 [AT1 (AT1a)] receptor-mediated uptake of ANG II in the proximal tubule and attenuates blood pressure responses in ANG II-induced hypertension. To determine the role of CAV-1 in mediating the uptake of FITC-labeled ANG II, wild-type (WT) mouse proximal convoluted tubule cells were transfected with CAV-1 small interfering (si)RNA for 48 h before AT1 receptor-mediated uptake of FITC-labeled ANG II was studied. CAV-1 siRNA knocked down CAV-1 expression by >90% (P < 0.01) and inhibited FITC-labeled ANG II uptake by >50% (P < 0.01). Moreover, CAV-1 siRNA attenuated ANG II-induced activation of MAPK ERK1/2 and Na(+)/H(+) exchanger 3 expression, respectively (P < 0.01). To determine whether CAV-1 regulates ANG II uptake in the proximal tubule, Alexa 488-labeled ANG II was infused into anesthetized WT and CAV-1 KO mice for 60 min (20 ng/min iv). Imaging analysis revealed that Alexa 488-labeled ANG II uptake was decreased by >50% in CAV-1 KO mice (P < 0.01). Furthermore, Val(5)-ANG II was infused into WT and CAV-1 KO mice for 2 wk (1.5 mg·kg(-1)·day(-1) ip). Basal systolic pressure was higher, whereas blood pressure and renal excretory and signaling responses to ANG II were attenuated, in CAV-1 KO mice (P < 0.01). We concluded that CAV-1 plays an important role in AT1 receptor-mediated uptake of ANG II in the proximal tubule and modulates blood pressure and renal responses to ANG II.


Subject(s)
Angiotensin II/metabolism , Caveolin 1/physiology , Kidney Tubules, Proximal/metabolism , Receptor, Angiotensin, Type 1/metabolism , Animals , Blood Pressure/drug effects , Caveolin 1/genetics , Cells, Cultured , Kidney Tubules, Proximal/cytology , Male , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , RNA, Small Interfering/metabolism , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/biosynthesis
17.
Am J Physiol Renal Physiol ; 307(2): F222-33, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24740791

ABSTRACT

The present study tested the hypothesis that the multiligand endocytic receptor megalin is partially involved in the uptake of ANG II and downstream signaling responses in mouse proximal tubule cells (mPCT) by interacting with AT1a receptors. mPCT cells of wild-type (WT) and AT1a receptor-deficient (AT1a-KO) mice were treated with vehicle, the AT1 receptor blocker losartan (10 µM), or a selective megalin small interfering (si) RNA for 48 h. The uptake of fluorescein (FITC)-labeled ANG II (10 nM, 37°C) and downstream signaling responses were analyzed by fluorescence imaging and Western blotting. AT1a receptors and megalin were abundantly expressed in mPCT cells, whereas AT1a receptors were absent in AT1a-KO mPCT cells (P < 0.01). In WT mPCT cells, FITC-ANG II uptake was visualized at 30 min in the cytoplasm and in the nuclei 1 h after exposure. Losartan alone completely blocked the uptake of FITC-ANG II, whereas megalin siRNA inhibited only 30% of the response (P < 0.01). The remaining FITC-ANG II uptake in the presence of megalin siRNA was completely abolished by losartan. ANG II induced threefold increases in phosphorylated MAP kinases ERK1/2 and a onefold increase in phosphorylated sodium and hydrogen exchanger 3 (NHE3) proteins, which were also blocked by losartan and megalin-siRNA. By contrast, losartan and megalin siRNA had no effects on these signaling proteins in AT1a-KO mPCT cells. We conclude that the uptake of ANG II and downstream MAP kinases ERK1/2 and NHE3 signaling responses in mPCT cells are mediated primarily by AT1a receptors. However, megalin may also play a partial role in these responses to ANG II.


Subject(s)
Angiotensin II/metabolism , Endocytosis , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Receptor, Angiotensin, Type 1/metabolism , Angiotensin II/analogs & derivatives , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Cells, Cultured , Endocytosis/drug effects , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Kidney Tubules, Proximal/drug effects , Ligands , Losartan/pharmacology , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , RNA Interference , Receptor, Angiotensin, Type 1/deficiency , Receptor, Angiotensin, Type 1/drug effects , Receptor, Angiotensin, Type 1/genetics , Signal Transduction , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/metabolism , Transfection
18.
Article in English | MEDLINE | ID: mdl-24273531

ABSTRACT

The renin-angiotensin system (RAS) is well-recognized as one of the oldest and most important regulators of arterial blood pressure, cardiovascular, and renal function. New frontiers have recently emerged in the RAS research well beyond its classic paradigm as a potent vasoconstrictor, an aldosterone release stimulator, or a sodium-retaining hormone. First, two new members of the RAS have been uncovered, which include the renin/(Pro)renin receptor (PRR) and angiotensin-converting enzyme 2 (ACE2). Recent studies suggest that prorenin may act on the PRR independent of the classical ACE/ANG II/AT1 receptor axis, whereas ACE2 may degrade ANG II to generate ANG (1-7), which activates the Mas receptor. Second, there is increasing evidence that ANG II may function as an intracellular peptide to activate intracellular and/or nuclear receptors. Third, currently there is a debate on the relative contribution of systemic versus intrarenal RAS to the physiological regulation of blood pressure and the development of hypertension. The objectives of this article are to review and discuss the new insights and perspectives derived from recent studies using novel transgenic mice that either overexpress or are deficient of one key enzyme, ANG peptide, or receptor of the RAS. This information may help us better understand how ANG II acts, both independently or through interactions with other members of the system, to regulate the kidney function and blood pressure in health and disease.

19.
Curr Hypertens Rep ; 15(5): 522-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23996678

ABSTRACT

Type 2 diabetes is well recognized as a noninsulin-dependent diabetic disease. Clinical evidence indicates that the level of circulating insulin may be normal, subnormal, and even elevated in type 2 diabetic patients. Unlike type 1 diabetes, the key problem for type 2 diabetes is not due to the absolute deficiency of insulin secretion, but because the body is no longer sensitive to insulin. Thus, insulin resistance is increased and the sensitivity to insulin is reset, so increasing levels of insulin are required to maintain body glucose and metabolic homeostasis. How insulin resistance is increased and what factors contribute to its development in type 2 diabetes remain incompletely understood. Overemphasis of insulin deficiency alone may be too simplistic for us to understand how type 2 diabetes is developed and should be treated, since glucose metabolism and homeostasis are tightly controlled by both insulin and glucagon. Insulin acts as a YIN factor to lower blood glucose level by increasing cellular glucose uptake, whereas glucagon acts as a YANG factor to counter the action of insulin by increasing glucose production. Furthermore, other humoral factors other than insulin and glucagon may also directly or indirectly contribute to increased insulin resistance and the development of hyperglycemia. The purpose of this article is to briefly review recently published animal and human studies in this field, and provide new insights and perspectives on recent debates as to whether hyperglucagonemia and/or glucagon receptors should be targeted to treat insulin resistance and target organ injury in type 2 diabetes.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Glucagon/metabolism , Hyperglycemia/drug therapy , Hypertension/drug therapy , Animals , Blood Glucose/metabolism , Humans , Insulin/metabolism
20.
Compr Physiol ; 3(3): 1079-123, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23897681

ABSTRACT

The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches.


Subject(s)
Kidney Tubules, Proximal/physiology , Animals , Animals, Genetically Modified , Antiporters/physiology , Biological Transport/physiology , Dopamine/physiology , Hormones/physiology , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/ultrastructure , Signal Transduction/physiology , Sodium/metabolism , Symporters/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...